ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ ГОРОДСКОГО ОКРУГА ТОЛЬЯТТИ НА ПЕРИОД С 2020 ДО 2038 ГОДА

ГЛАВА 4

СУЩЕСТВУЮЩИЕ И ПЕРСПЕКТИВНЫЕ БАЛАНСЫ ТЕПЛОВОЙ МОЩНОСТИ ИСТОЧНИКОВ ТЕПЛОВОЙ ЭНЕРГИИ И ТЕПЛОВОЙ НАГРУЗКИ ПОТРЕБИТЕЛЕЙ

СОСТАВ РАБОТ

- Схема теплоснабжения г. о. Тольятти. Утверждаемая часть
 - Обосновывающие материалы к схеме теплоснабжения г. о. Тольятти:
- Глава 1. Существующее положение в сфере производства, передачи и потребления тепловой энергии для целей теплоснабжения
- Глава 2. Существующее и перспективное потребление тепловой энергии на цели теплоснабжения
- Глава 3. Электронная модель системы теплоснабжения г.о. Тольятти
- Глава 4. Существующие и перспективные балансы тепловой мощности источников тепловой энергии и тепловой нагрузки потребителей
- Глава 5. Мастер-план развития систем теплоснабжения г.о. Тольятти
- Глава 6. Существующие и перспективные балансы производительности водоподготовительных установок и максимального потребления теплоносителя теплопотребляющими установками потребителей, в том числе в аварийных режимах
- Глава 7. Предложения по строительству, реконструкции и техническому перевооружению источников тепловой энергии
- Глава 8. Предложения по строительству и реконструкции тепловых сетей
- Глава 9. Предложения по переводу открытых систем теплоснабжения (горячего водоснабжения) в закрытые системы горячего водоснабжения
- Глава 10. Перспективные топливные балансы
- Глава 11. Оценка надежности теплоснабжения
- Глава 12. Обоснование инвестиций в строительство, реконструкцию и техническое перевооружение
- Глава 13. Индикаторы развития систем теплоснабжения г.о. Тольятти
- Глава 14. Ценовые (тарифные) последствия
- Глава 15. Реестр единых теплоснабжающих организаций
- Глава 16. Реестр мероприятий схемы теплоснабжения
- Глава 17. Замечания и предложения к проекту схемы теплоснабжения
- Глава 18. Сводный том изменений, выполненных в доработанной и (или) актуализированной схеме теплоснабжения

СОДЕРЖАНИЕ

ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ	5
ЧАСТЬ 1. БАЛАНСЫ СУЩЕСТВУЮЩЕЙ НА БАЗОВЫЙ ПЕРИОД СХЕТЕПЛОСНАБЖЕНИЯ (АКТУАЛИЗАЦИЯ СХЕМЫ ТЕПЛОСНАБЖЕНИЯ МОЩНОСТИ И ПЕРСПЕКТИВНОЙ ТЕПЛОВОЙ НАГРУЗКИ В КАЖДО ИСТОЧНИКОВ ТЕПЛОВОЙ ЭНЕРГИИ С ОПРЕДЕЛЕНИЕМ РЕЗЕРВОВ СУЩЕСТВУЮЩЕЙ РАСПОЛАГАЕМОЙ ТЕПЛОВОЙ МОЩНОСТИ ИСТЕПЛОВОЙ ЭНЕРГИИ, УСТАНАВЛИВАЕМЫХ НА ОСНОВАНИИ ВЕЛТЕПЛОВОЙ НАГРУЗКИ	I) ТЕПЛОВОЙ Й ИЗ ЗОН ДЕЙСТВИЯ (ДЕФИЦИТОВ) ТОЧНИКОВ ИЧИНЫ РАСЧЁТНОЙ
1.1 Балансовые показатели источников теплоснабжения за 2018 г	
1.2 Изменение перспективной нагрузки тепловой энергии источников г. Закладка не определена.	о. Тольятти Ошибка!
1.2.1 Прогноз снижения объемов потребления тепловой энергии (мощ Закладка не определена.	ности) Ошибка!
 1.2.1.1. Снижение тепловой нагрузки за счет сноса зданий	роприятийОшибка!
определена.	
1.3 Балансы тепловой энергии (мощности) и перспективной тепловой на определением резервов (дефицитов) существующей располагаемой теплисточника тепловой энергии	овой мощности
1.4 Балансы тепловой энергии (мощности) и перспективной тепловой на определением резервов (дефицитов) существующей располагаемой тепл источника тепловой энергии	грузки ТоТЭЦ с овой мощности
1.5 Балансы тепловой энергии (мощности) и перспективной тепловой на 34 с определением резервов (дефицитов) существующей располагаемой источника тепловой энергии	тепловой мощности
1.6 Балансы тепловой энергии (мощности) и перспективной тепловой на определением резервов (дефицитов) существующей располагаемой тепл источника тепловой энергии	овой мощности
1.7 Балансы тепловой энергии (мощности) и перспективной тепловой на определением резервов (дефицитов) существующей располагаемой тепл источника тепловой энергии	овой мощности
1.8 Балансы тепловой энергии (мощности) и перспективной тепловой на определением резервов (дефицитов) существующей располагаемой тепл источника тепловой энергии	овой мощности
1.9 Балансы тепловой энергии (мощности) и перспективной тепловой на определением резервов (дефицитов) существующей располагаемой тепл источника тепловой энергии	овой мощности
1.10 Балансы тепловой энергии (мощности) и перспективной тепловой н с определением резервов (дефицитов) существующей располагаемой теписточника тепловой энергии	іловой мощности
1.11 Балансы тепловой энергии (мощности) и перспективной тепловой н с определением резервов (дефицитов) существующей располагаемой теписточника тепловой энергии	агрузки котельной № 7 іловой мощности
11V 1 V 1111111 V 1 V 1 V 1 V 1 V 1 V 1	

с определением резервов (дефицитов) существующей располагаемой тепловой мощности источника тепловой энергии	
1.13 Балансы тепловой энергии (мощности) и перспективной тепловой нагрузки котельной № 3 с определением резервов (дефицитов) существующей располагаемой тепловой мощности источника тепловой энергии	
1.14 Балансы тепловой энергии (мощности) и перспективной тепловой нагрузки котельной № 1 с определением резервов (дефицитов) существующей располагаемой тепловой мощности источника тепловой энергии	
ЧАСТЬ 2. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ПЕРЕДАЧИ ТЕПЛОНОСИТЕЛЯ ДЛЯ КАЖДОГО МАГИСТРАЛЬНОГО ВЫВОДА С ЦЕЛЬЮ ОПРЕДЕЛЕНИЯ ВОЗМОЖНОСТИ (НЕВОЗМОЖНОСТИ) ОБЕСПЕЧЕНИЯ ТЕПЛОВОЙ ЭНЕРГИЕЙ СУЩЕСТВУЮЩИХ И ПЕРСПЕКТИВНЫХ ПОТРЕБИТЕЛЕЙ, ПРИСОЕДИНЕННЫХ К ТЕПЛОВОЙ СЕТИ ОТ КАЖДОГО ИСТОЧНИКА ТЕПЛОВОЙ ЭНЕРГИИ	32
2.1 Расход сетевой воды в подающих трубопроводах при переводе на фактическую нагрузку 3 2.2 Расход сетевой воды в подающих трубопроводах при переводе на перспективную фактическую нагрузку	32 32
ЧАСТЬ 3. ВЫВОДЫ О РЕЗЕРВАХ (ДЕФИЦИТАХ) СУЩЕСТВУЮЩЕЙ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ ПРИ ОБЕСПЕЧЕНИИ ПЕРСПЕКТИВНОЙ ТЕПЛОВОЙ НАГРУЗКИ ПОТРЕБИТЕЛЕЙ	12
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ4	3
ПРИЛОЖЕНИЕ 1 Программа вводов/выводов основного оборудования источников тепловой энергии филиала «Самарский» ПАО «Т Плюс» в г. о. Тольятти	4

ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

АИТ – автономный источник тепловой энергии.

ПАО «Т Плюс» – Публичное акционерное общество «Т Плюс»

г. о. Тольятти – городской округ Тольятти.

ГВС – горячее водоснабжение.

ДУМИ – департамент по управлению муниципальным имуществом Мэрии г. о. Тольятти.

ЖКХ – жилищно-коммунальное хозяйство.

ИТП – индивидуальный тепловой пункт.

ИТЭ – источник тепловой энергии.

КА – котельный агрегат.

Котельная № 2 – производственная отопительная котельная № 2 г. о. Тольятти (Комсомольский район).

Котельная № 8 — отопительная котельная № 8 г. о. Тольятти (Комсомольский район, мкрн. Шлюзовой).

КПД – коэффициент полезного действия.

мкрн. – микрорайон.

МТС – магистральная тепловая сеть.

НГВ – насосная горячей воды.

НС – насосная станция.

Обосновывающие материалы – обосновывающие материалы к схеме теплоснабжения, являющиеся ее неотъемлемой частью, разработанные в соответствии с п. 18 Требований к схемам теплоснабжения (утверждены постановлением Правительства Российской Федерации от 22.02.2012 № 154

ОВ – отопление и вентиляция.

ПВ – промышленная (техническая) вода.

ППР – планово-предупредительный ремонт.

ППУ – пенополиуретан.

ПТЭ – «Правила технической эксплуатации электрических станций и сетей Российской Федерации» (М.: СПО ОРГРЭС, 2003 г.).

РТН – Федеральная служба по экологическому, технологическому и атомному надзору (Ростехнадзор).

СВ – система вентиляции.

СО – система отопления.

ТЕВИС – Открытое акционерное общество «ТЕВИС» (АО «ТЕВИС).

ТОА – теплообменный аппарат.

ТоТЭЦ – Тольяттинская ТЭЦ филиала «Самарский» ПАО «Т Плюс».

ТП – тепловой пункт.

ТС – тепловая сеть.

ТСО – теплоснабжающая организация.

ТУТС Тольятти – Территориальное управление по теплоснабжению в г. о. Тольятти, производственное предприятие филиала «Самарский» ПАО «Т Плюс».

ТФУ – теплофикационная установка.

ТЭР – топливно-энергетические ресурсы.

ТЭЦ ВАЗа – ТЭЦ Волжского автозавода филиала «Самарский» ПАО «Т Плюс».

УПТС – установки для подпитки тепловых сетей.

УУТЭ – узел учета тепловой энергии.

 $XB\Pi$ — химводоподготовка.

ХОВ – химически очищенная вода.

ХПВ – хозяйственно-питьевая вода.

ЦТП – центральный тепловой пункт.

ЭР – энергетический ресурс.

ЭСМ – энергосберегающие мероприятия.

ЧАСТЬ 1. БАЛАНСЫ СУЩЕСТВУЮЩЕЙ НА БАЗОВЫЙ ПЕРИОД СХЕМЫ ТЕПЛОСНАБЖЕНИЯ (АКТУАЛИЗАЦИЯ СХЕМЫ ТЕПЛОСНАБЖЕНИЯ) ТЕПЛОВОЙ МОЩНОСТИ И ПЕРСПЕКТИВНОЙ ТЕПЛОВОЙ НАГРУЗКИ В КАЖДОЙ ИЗ ЗОН ДЕЙСТВИЯ ИСТОЧНИКОВ ТЕПЛОВОЙ ЭНЕРГИИ С ОПРЕДЕЛЕНИЕМ РЕЗЕРВОВ (ДЕФИЦИТОВ) СУЩЕСТВУЮЩЕЙ РАСПОЛАГАЕМОЙ ТЕПЛОВОЙ МОЩНОСТИ ИСТОЧНИКОВ ТЕПЛОВОЙ ЭНЕРГИИ, УСТАНАВЛИВАЕМЫХ НА ОСНОВАНИИ ВЕЛИЧИНЫ РАСЧЁТНОЙ ТЕПЛОВОЙ НАГРУЗКИ

1.1 Балансовые показатели источников теплоснабжения за 2018 г.

В таблицах ниже приведены балансовые показатели источников теплоснабжения г.о. Тольятти за 2018 г.

Т а б л и ц а 1 – Балансовые показатели ТЭЦ ВАЗа и ТоТЭЦ за фактический период 2018 г.

Наименование источника	Выработка электрической энергии, тыс. МВт*ч	Отпуск тепловой энергии с коллекторов, тыс.Гкал	Отпуск электроэнергии, тыс. МВт*ч	Расход условного топлива, тыс.т у.т.	Удельный расход условного топлива на отпуск э.э., г у.т./кВт*ч	Удельный расход условного топлива на отпуск т.э., кг у.т./Гкал
ТЭЦ ВАЗа	3017,6	5489,4	2598,6	1627,7	258,8	174,0
ТоТЭЦ	1539,2	4463,7	1166,6	1062,0	245,5	165,4

Т а б л и ц а 2 – Балансовые показатели котельных г.о. Тольятти за $2018\ \Gamma$

Наименование источника	Выработка тепловой энергии, Гкал	Отпуск тепловой энергии с коллекторов, Гкал	Расход условного топлива, т у.т.	Удельный расход условного топлива на отпуск т.э., кг у.т./Гкал
Котельная № 2	535103	518617	83792	156,6
Котельная № 8	197999	191622	31651	159,8
Котельная БМК-34	65332	63373	10342	158,3
Котельная № 6	13219	10786	2084	157,7
Котельная № 14	9171	9115	1695	184,9
Котельная № 3	6787	6769	1087	160,2
Котельная № 4	1870	1865	379	202,0
Котельная № 7	1483	1439	265	181,1
Миникотельная	202	202	33	161,8

1.2 Балансы тепловой энергии (мощности) и перспективной тепловой нагрузки ТЭЦ ВАЗа с определением резервов (дефицитов) существующей располагаемой тепловой мощности источника тепловой энергии

На основе данных по выводу основного оборудования на ТЭЦ ВАЗа, приведенных в приложении 1 к настоящей главе, были определены перспективные значения располагаемой тепловой мощности источника.

Балансы тепловой мощности и перспективной тепловой нагрузки ТЭЦ ВАЗа с определением резервов (дефицитов) приведены в таблице ниже.

Резерв тепловой мощности по фактической нагрузке к 2038 г. составляет 1257 Гкал/ч, однако по договорной нагрузке наблюдается дефицит тепловой мощности в количестве 313 Гкал/ч.

Т а б л и ц а 3 – Балансы тепловой мощности и перспективной тепловой нагрузки ТЭЦ ВАЗа

Таблица3 — Ба	лансы т	emioro	1 мощно	сти и по	ерспекти	івной те	пловои	нагрузк	и <u>гэ</u> ц і	БАЗа															
Наименование показателя	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Установленная тепловая мощность, в том числе	3903	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343
отборы паровых турбин, в том числе	2183	2183	2183	2183	2183	2183	2183	2183	2183	2183	2183	2183	2183	2183	2183	2183	2183	2183	2183	2183	2183	2183	2183	2183	2183
производственных показателей	750	750	750	750	750	750	750	750	750	750	750	750	750	750	750	750	750	750	750	750	750	750	750	750	750
теплофикационные	1433	1433	1433	1433	1433	1433	1433	1433	1433	1433	1433	1433	1433	1433	1433	1433	1433	1433	1433	1433	1433	1433	1433	1433	1433
РОУ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ПВК	1720	1160	1160	1160	1160	1160	1160	1160	1160	1160	1160	1160	1160	1160	1160	1160	1160	1160	1160	1160	1160	1160	1160	1160	1160
Располагаемая тепловая мощность станции	3903	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343	3343
Затраты тепла на собственные нужды станции в горячей воде	26	27	26	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Затраты тепла на собственные нужды станции в паре	6	7	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
Потери в тепловых сетях в горячей воде (тыс. Гкал/год)*, в том числе	н/д	н/д	н/д	н/д	347,9	347,9	347,9	347,9	347,9	347,9	347,9	347,9	347,9	347,9	347,9	347,9	347,9	347,9	347,9	347,9	347,9	347,9	347,9	347,9	347,9
Потери в паропроводах (тыс.Гкал/год)*	н/д	н/д	н/д	н/д	11,88	11,88	11,88	11,88	11,88	11,88	11,88	11,88	11,88	11,88	11,88	11,88	11,88	11,88	11,88	11,88	11,88	11,88	11,88	11,88	11,88
Расчетная нагрузка на хозяйственные нужды ТЭЦ	2,9	2,7	2,7	2,7	3	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8
Присоединенная договорная тепловая нагрузка в горячей воде, в том числе	н/д	н/д	3410	3382	3490	3498	3501	3511	3514	3522	3529	3535	3540	3546	3553	3559	3565	3571	3577	3584	3590	3596	3602	3608	3614
Присоединенная непосредственно к коллекторам станции	н/д	н/д	3410	3382	3490	3498	3501	3511	3514	3522	3529	3535	3540	3546	3553	3559	3565	3571	3577	3584	3590	3596	3602	3608	3614
Присоединенная фактическая тепловая нагрузка в горячей воде (на коллекторах станции), в том числе	н/д	н/д	1877	1877	1921	1929	1933	1943	1945	1953	1960	1966	1971	1978	1984	1990	1996	2002	2009	2015	2021	2027	2033	2039	2046
Присоединенная договорная тепловая нагрузка в паре	н/д	н/д	7,6	7,6	7,6	7,6	7,6	7,6	7,6	7,6	7,6	7,6	7,6	7,6	7,6	7,6	7,6	7,6	7,6	7,6	7,6	7,6	7,6	7,6	7,6
Присоединенная фактическая тепловая нагрузка в паре (на коллекторах станции)	8,0	5,5	6,4	6,1	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2
Резерв/дефицит тепловой мощности (по договорной нагрузке)	-	-	-109	-81	-189	-196	-200	-210	-213	-220	-227	-233	-239	-245	-251	-258	-264	-270	-276	-282	-288	-294	-300	-307	-313
Резерв/дефицит тепловой мощности (по фактической нагрузке)	-	-	1425	1426	1381	1374	1370	1360	1358	1350	1343	1337	1332	1325	1319	1313	1307	1301	1294	1288	1282	1276	1270	1264	1257
Располагаемая тепловая мощность нетто (с учетом затрат на собственные нужды станции) при аварийном выводе самого мощного котла	3871	3309	3311	3312	3312	3312	3312	3312	3312	3312	3312	3312	3312	3312	3312	3312	3312	3312	3312	3312	3312	3312	3312	3312	3312
Минимально допустимое значение тепловой нагрузки на коллекторах станции при аварийном выводе самого мощного пикового котла/турбоагрегата	3553	2991	2993	2994	2994	2994	2994	2994	2994	2994	2994	2994	2994	2994	2994	2994	2994	2994	2994	2994	2994	2994	2994	2994	2994

1.3 Балансы тепловой энергии (мощности) и перспективной тепловой нагрузки ТоТЭЦ с определением резервов (дефицитов) существующей располагаемой тепловой мощности источника тепловой энергии

На основе данных по выводу основного оборудования на ТоТЭЦ, приведенных в приложении 1 к настоящей главе, были определены перспективные значения располагаемой тепловой мощности источника.

Балансы тепловой мощности и перспективной тепловой нагрузки ТоТЭЦ с определением резервов (дефицитов) приведены в таблице ниже.

Резерв тепловой мощности по фактической нагрузке к 2038 г. составляет 590, Гкал/ч, однако по договорной нагрузке наблюдается дефицит тепловой мощности в количестве 453Гкал/ч.

Т а б л и ц а 4 – Балансы тепловой мощности и перспективной тепловой нагрузки ТоТЭЦ

Таблица4 — Е	оаланс	ы теп	ловои м	ощност	и и перс	пективн	юи тепл	овои на	грузки т	отэц															
Наименование показателя	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Установленная тепловая мощность, в том числе	2173	1551	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517
отборы паровых турбин, в том числе	1573	1551	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517
производственных показателей	945	923	889	889	889	889	889	889	889	889	889	889	889	889	889	889	889	889	889	889	889	889	889	889	889
теплофикационные	628	628	628	628	628	628	628	628	628	628	628	628	628	628	628	628	628	628	628	628	628	628	628	628	628
РОУ	598	598	598	598	598	598	598	598	598	598	598	598	598	598	598	598	598	598	598	598	598	598	598	598	598
ПВК	600	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Располагаемая тепловая мощность станции	1813	1551	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517	1517
Затраты тепла на собственные нужды станции в горячей воде	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
Затраты тепла на собственные нужды станции в паре	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Потери в тепловых сетях в горячей воде (тыс. Гкал/год)*, в том числе	н/д	н/д	н/д	н/д	324,2	324,2	324,2	324,2	324,2	324,2	324,2	324,2	324,2	324,2	324,2	324,2	324,2	324,2	324,2	324,2	324,2	324,2	324,2	324,2	324,2
Потери в паропроводах (тыс. Гкал/год)*	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д
Расчетная нагрузка на хозяйственные нужды ТЭЦ	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Присоединенная договорная тепловая нагрузка в горячей воде, в том числе	н/д	н/д	1217,36	1253,52	1172,70	1180,33	1183,81	1193,83	1196,76	1199,17	1201,55	1203,57	1205,41	1207,41	1209,55	1211,62	1213,64	1215,65	1217,70	1219,75	1221,80	1223,83	1225,87	1227,91	1229,96
Присоединенная непосредственно к коллекторам станции	н/д	н/д	1217,36	1253,52	1172,70	1180,33	1183,81	1193,83	1196,76	1199,17	1201,55	1203,57	1205,41	1207,41	1209,55	1211,62	1213,64	1215,65	1217,70	1219,75	1221,80	1223,83	1225,87	1227,91	1229,96
Присоединенная фактическая тепловая нагрузка в горячей воде (на коллекторах станции), в том числе	н/д	н/д	578,9	509,4	509,4	517,03	520,51	530,53	533,46	535,87	538,25	540,27	542,11	544,11	546,25	548,32	550,34	552,35	554,40	556,45	558,50	560,53	562,57	564,61	566,66
Присоединенная договорная тепловая нагрузка в паре	н/д	н/д	690,41	690,41	718,41	718,41	718,41	718,41	718,41	718,41	718,41	718,41	718,41	718,41	718,41	718,41	718,41	718,41	718,41	718,41	718,41	718,41	718,41	718,41	718,41
Присоединенная фактическая тепловая нагрузка в паре (на коллекторах станции)	453	428	403	338	338	338	338	338	338	338	338	338	338	338	338	338	338	338	338	338	338	338	338	338	338
Резерв/дефицит тепловой мощности (по договорной нагрузке)	-	1	-412,77	-448,93	-396,11	-403,74	-407,22	-417,24	-420,17	-422,58	-424,96	-426,98	-428,82	-430,82	-432,96	-435,03	-437,05	-439,06	-441,11	-443,16	-445,21	-447,24	-449,28	-451,32	-453,37

Наименование показателя	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Резерв/дефицит тепловой мощности (по фактической нагрузке)	-	-	513,10	647,60	647,60	639,97	636,49	626,47	623,54	621,13	618,75	616,73	614,89	612,89	610,75	608,68	606,66	604,65	602,60	600,55	598,50	596,47	594,43	592,39	590,34
Располагаемая тепловая мощность нетто (с учетом затрат на собственные нужды станции) при аварийном выводе самого мощного котла	1795	1533	1499	1499	1499	1499	1499	1499	1499	1499	1499	1499	1499	1499	1499	1499	1499	1499	1499	1499	1499	1499	1499	1499	1499
Минимально допустимое значение тепловой нагрузки на коллекторах станции при аварийном выводе самого мощного пикового котла/турбоагрегата	1467	1205	1171	1171	1171	1171	1171	1171	1171	1171	1171	1171	1171	1171	1171	1171	1171	1171	1171	1171	1171	1171	1171	1171	1171

1.4 Балансы тепловой энергии (мощности) и перспективной тепловой нагрузки котельной БМК-34 с определением резервов (дефицитов) существующей располагаемой тепловой мощности источника тепловой энергии

Балансы тепловой мощности и перспективной тепловой нагрузки котельной БМК-34 с определением резервов (дефицитов) приведены в таблице ниже.

Резерв тепловой мощности к 2038 г. составляет 3,63 Гкал/ч.

Т а б л и ц а 5 – Балансы тепловой мощности и перспективной тепловой нагрузки котельной БМК-34

Наименование показателя	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Установленная тепловая мощность, в том числе	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
Располагаемая тепловая мощность котельной	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
Затраты тепла на собственные нужды	н/д	н/д	н/д	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6
Потери в тепловых сетях (Гкал)	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д	н/д
Расчетная нагрузка на хозяйственные нужды	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Присоединенная договорная тепловая нагрузка в горячей воде, в том числе	н/д	н/д	н/д	23,68	23,68	23,92	24,11	24,49	24,77	24,77	24,77	24,77	24,77	24,77	24,77	24,77	24,77	24,77	24,77	24,77	24,77	24,77	24,77	24,77	24,77
отопление и вентиляция	н/д	н/д	н/д	19,09	19,09	19,26	19,41	19,66	19,84	19,84	19,84	19,84	19,84	19,84	19,84	19,84	19,84	19,84	19,84	19,84	19,84	19,84	19,84	19,84	19,84
горячее водоснабжение	н/д	н/д	н/д	4,59	4,59	4,66	4,70	4,83	4,94	4,94	4,94	4,94	4,94	4,94	4,94	4,94	4,94	4,94	4,94	4,94	4,94	4,94	4,94	4,94	4,94
Резерв/дефицит тепловой мощности	н/д	н/д	н/д	4,72	4,72	4,48	4,29	3,91	3,63	3,63	3,63	3,63	3,63	3,63	3,63	3,63	3,63	3,63	3,63	3,63	3,63	3,63	3,63	3,63	3,63
Располагаемая тепловая мощность нетто (с учетом затрат на собственные нужды) при аварийном выводе самого мощного котла	н/д	н/д	н/д	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7
Минимально допустимое значение тепловой нагрузки на коллекторах источника тепловой энергии при аварийном выводе самого мощного котла	н/д	н/д	н/д	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7

ЮгЭнергоИнжиниринг

1.5 Балансы тепловой энергии (мощности) и перспективной тепловой нагрузки котельной № 2 с определением резервов (дефицитов) существующей располагаемой тепловой мощности источника тепловой энергии

Балансы тепловой мощности и перспективной тепловой нагрузки котельной №2 с определением резервов (дефицитов) приведены в таблице ниже.

Резерв тепловой мощности к 2038 г. составляет 2,3 Гкал/ч.

Т а б л и ц а 6 – Балансы тепловой мощности и перспективной тепловой нагрузки котельной № 2

Наименование показателя	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Установленная тепловая мощность, в том числе	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6
Располагаемая тепловая мощность станции	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6	386,6
Затраты тепла на собственные нужды, Гкал/год	16125	16125	16125	16125	16125	16125	16125	16125	16125	16125	16125	16125	16125	16125	16125	16125	16125	16125	16125	16125	16125	16125	16125	16125	16125
Потери в тепловых сетях, Гкал/год	58427	58427	58427	58427	58427	58427	58427	58427	58427	58427	58427	58427	58427	58427	58427	58427	58427	58427	58427	58427	58427	58427	58427	58427	58427
Расчетная нагрузка на хозяйственные нужды, Гкал/год	3208	3208	3208	3208	3208	3208	3208	3208	3208	3208	3208	3208	3208	3208	3208	3208	3208	3208	3208	3208	3208	3208	3208	3208	3208
Присоединенная договорная тепловая нагрузка в горячей воде, в том числе	327	327	327	327	357	357,4	357,4	357,4	357,4	359,2	360,9	362,4	363,8	365,3	366,9	368,4	369,9	371,4	373,0	374,5	376,0	377,5	379,0	380,6	382,1
отопление и вентиляция	230,8	230,8	230,8	230,8	260,8	261,0	261,0	261,0	261,0	262,6	264,1	265,4	266,5	267,8	269,2	270,5	271,8	273,0	274,3	275,6	276,9	278,2	279,5	280,8	282,1
горячее водоснабжение	96,2	96,2	96,2	96,2	96,2	96,3	96,3	96,3	96,3	96,6	96,9	97,1	97,3	97,5	97,7	98,0	98,2	98,4	98,6	98,8	99,1	99,3	99,5	99,7	100,0
Резерв/дефицит тепловой мощности	57,39	57,39	57,39	57,39	27,39	27,03	27,03	27,01	27,01	25,23	23,47	21,96	20,58	19,09	17,50	15,96	14,46	12,96	11,43	9,90	8,38	6,86	5,34	3,82	2,30
Располагаемая тепловая мощность нетто (с учетом затрат на собственные нужды) при аварийном выводе самого мощного котла	113,6	113,6	113,6	113,6	113,6	113,6	113,6	113,6	113,6	113,6	113,6	113,6	113,6	113,6	113,6	113,6	113,6	113,6	113,6	113,6	113,6	113,6	113,6	113,6	113,6
Минимально допустимое значение тепловой нагрузки на коллекторах источника тепловой энергии при аварийном выводе самого мощного котла	111,8	111,8	111,8	111,8	111,8	111,8	111,8	111,8	111,8	111,8	111,8	111,8	111,8	111,8	111,8	111,8	111,8	111,8	111,8	111,8	111,8	111,8	111,8	111,8	111,8

1.6 Балансы тепловой энергии (мощности) и перспективной тепловой нагрузки котельной № 8 с определением резервов (дефицитов) существующей располагаемой тепловой мощности источника тепловой энергии

Балансы тепловой мощности и перспективной тепловой нагрузки котельной №8 с определением резервов (дефицитов) приведены в таблице ниже.

Резерв тепловой мощности к 2038 г. составляет 3,86 Гкал/ч.

Т а б л и ц а 7 – Балансы тепловой мощности и перспективной тепловой нагрузки котельной № 8

Наименование показателя	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Установленная тепловая мощность, в том числе	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9
Располагаемая тепловая мощность станции	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9	139,9
Затраты тепла на собственные нужды, Гкал/год	5854	5854	5854	5854	5854	5854	5854	5854	5854	5854	5854	5854	5854	5854	5854	5854	5854	5854	5854	5854	5854	5854	5854	5854	5854
Потери в тепловых сетях, Гкал/год	72737	72737	72737	72737	72737	72737	72737	72737	72737	72737	72737	72737	72737	72737	72737	72737	72737	72737	72737	72737	72737	72737	72737	72737	72737
Расчетная нагрузка на хозяйственные нужды, Гкал/год	232	232	232	232	232	232	232	232	232	232	232	232	232	232	232	232	232	232	232	232	232	232	232	232	232
Присоединенная договорная тепловая нагрузка в горячей воде, в том числе	133,5	133,5	133,5	133,5	133,5	134,07	134,58	135,04	135,35	135,35	135,35	135,35	135,35	135,35	135,35	135,35	135,35	135,35	135,35	135,35	135,35	135,35	135,35	135,35	135,35
отопление и вентиляция	95,7	95,7	95,7	95,7	95,7	96,13	96,43	96,73	96,93	96,93	96,93	96,93	96,93	96,93	96,93	96,93	96,93	96,93	96,93	96,93	96,93	96,93	96,93	96,93	96,93
горячее водоснабжение	37,8	37,8	37,8	37,8	37,8	37,94	38,15	38,31	38,43	38,43	38,43	38,43	38,43	38,43	38,43	38,43	38,43	38,43	38,43	38,43	38,43	38,43	38,43	38,43	38,43
Резерв/дефицит тепловой мощности	5,71	5,71	5,71	5,71	5,71	5,14	4,63	4,17	3,86	3,86	3,86	3,86	3,86	3,86	3,86	3,86	3,86	3,86	3,86	3,86	3,86	3,86	3,86	3,86	3,86
Располагаемая тепловая мощность нетто (с учетом затрат на собственные нужды) при аварийном выводе самого мощного котла	39,9	39,9	39,9	39,9	39,9	39,9	39,9	39,9	39,9	39,9	39,9	39,9	39,9	39,9	39,9	39,9	39,9	39,9	39,9	39,9	39,9	39,9	39,9	39,9	39,9
Минимально допустимое значение тепловой нагрузки на коллекторах источника тепловой энергии при аварийном выводе самого мощного котла	39,2	39,2	39,2	39,2	39,2	39,2	39,2	39,2	39,2	39,2	39,2	39,2	39,2	39,2	39,2	39,2	39,2	39,2	39,2	39,2	39,2	39,2	39,2	39,2	39,2

18

1.7 Балансы тепловой энергии (мощности) и перспективной тепловой нагрузки котельной №6 с определением резервов (дефицитов) существующей располагаемой тепловой мощности источника тепловой энергии

Балансы тепловой мощности и перспективной тепловой нагрузки котельной №6 с определением резервов (дефицитов) приведены в таблице ниже.

Резерв тепловой мощности к 2038 г. составляет 13,79 Гкал/ч.

Т а б л и ц а 8 — Балансы тепловой мощности и перспективной тепловой нагрузки котельной № 6

Наименование показателя	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Установленная тепловая мощность, в том числе	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8
Располагаемая тепловая мощность станции	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8	19,8
Затраты тепла на собственные нужды, Гкал/год	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002
Потери в тепловых сетях, Гкал/год	3665	3665	3665	3665	3665	3665	3665	3665	3665	3665	3665	3665	3665	3665	3665	3665	3665	3665	3665	3665	3665	3665	3665	3665	3665
Расчетная нагрузка на хозяйственные нужды, Гкал/год	77	77	77	77	77	77	77	77	77	77	77	77	77	77	77	77	77	77	77	77	77	77	77	77	77
Присоединенная договорная тепловая нагрузка в горячей воде, в том числе	5,77	5,77	5,77	5,77	5,77	5,77	5,77	5,77	5,77	5,77	5,77	5,77	5,77	5,77	5,77	5,77	5,77	5,77	5,77	5,77	5,77	5,77	5,77	5,77	5,77
отопление и вентиляция	5,62	5,62	5,62	5,62	5,62	5,62	5,62	5,62	5,62	5,62	5,62	5,62	5,62	5,62	5,62	5,62	5,62	5,62	5,62	5,62	5,62	5,62	5,62	5,62	5,62
горячее водоснабжение	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15
Резерв/дефицит тепловой мощности	13,79	13,79	13,79	13,79	13,79	13,79	13,79	13,79	13,79	13,79	13,79	13,79	13,79	13,79	13,79	13,79	13,79	13,79	13,79	13,79	13,79	13,79	13,79	13,79	13,79
Располагаемая тепловая мощность нетто (с учетом затрат на собственные нужды) при аварийном выводе самого мощного котла	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6
Минимально допустимое значение тепловой нагрузки на коллекторах источника тепловой энергии при аварийном выводе самого мощного котла	6,4	6,4	6,4	6,4	6,4	6,4	6,4	6,4	6,4	6,4	6,4	6,4	6,4	6,4	6,4	6,4	6,4	6,4	6,4	6,4	6,4	6,4	6,4	6,4	6,4

1.8 Балансы тепловой энергии (мощности) и перспективной тепловой нагрузки котельной № 1 с определением резервов (дефицитов) существующей располагаемой тепловой мощности источника тепловой энергии

Котельная № 1 находится в резерве. Потребители тепловой нагрузки переключены к котельной № 2.

1.9 Балансы тепловой энергии (мощности) и перспективной тепловой нагрузки котельной № 4 с определением резервов (дефицитов) существующей располагаемой тепловой мощности источника тепловой энергии

Балансы тепловой мощности и перспективной тепловой нагрузки котельной №4 с определением резервов (дефицитов) приведены в таблице ниже.

Резерв тепловой мощности к 2038 г. составляет 2,19 Гкал/ч.

Т а б л и ц а 9 – Балансы тепловой мощности и перспективной тепловой нагрузки котельной № 4

Наименование показателя	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Установленная тепловая мощность, в том числе	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96
Располагаемая тепловая мощность станции	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96	2,96
Затраты тепла на собственные нужды, Гкал/год	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Потери в тепловых сетях, Гкал/год	222	222	222	222	222	222	222	222	222	222	222	222	222	222	222	222	222	222	222	222	222	222	222	222	222
Расчетная нагрузка на хозяйственные нужды, Гкал/год	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Присоединенная договорная тепловая нагрузка в горячей воде, в том числе	0,768	0,768	0,768	0,768	0,768	0,768	0,768	0,768	0,768	0,768	0,768	0,768	0,768	0,768	0,768	0,768	0,768	0,768	0,768	0,768	0,768	0,768	0,768	0,768	0,768
отопление и вентиляция	0,566	0,566	0,566	0,566	0,566	0,566	0,566	0,566	0,566	0,566	0,566	0,566	0,566	0,566	0,566	0,566	0,566	0,566	0,566	0,566	0,566	0,566	0,566	0,566	0,566
горячее водоснабжение	0,202	0,202	0,202	0,202	0,202	0,202	0,202	0,202	0,202	0,202	0,202	0,202	0,202	0,202	0,202	0,202	0,202	0,202	0,202	0,202	0,202	0,202	0,202	0,202	0,202
Резерв/дефицит тепловой мощности	2,19	2,19	2,19	2,19	2,19	2,19	2,19	2,19	2,19	2,19	2,19	2,19	2,19	2,19	2,19	2,19	2,19	2,19	2,19	2,19	2,19	2,19	2,19	2,19	2,19
Располагаемая тепловая мощность нетто (с учетом затрат на собственные нужды) при аварийном выводе самого мощного котла	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7
Минимально допустимое значение тепловой нагрузки на коллекторах источника тепловой энергии при аварийном выводе самого мощного котла	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7

1.10 Балансы тепловой энергии (мощности) и перспективной тепловой нагрузки котельной № 7 с определением резервов (дефицитов) существующей располагаемой тепловой мощности источника тепловой энергии

Балансы тепловой мощности и перспективной тепловой нагрузки котельной №7 с определением резервов (дефицитов) приведены в таблице ниже.

Резерв тепловой мощности к 2038 г. составляет 1,2 Гкал/ч.

Т а б л и ц а 10 – Балансы тепловой мощности и перспективной тепловой нагрузки котельной № 7

Наименование показателя	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Установленная тепловая мощность, в том числе	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4
Располагаемая тепловая мощность станции	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4
Затраты тепла на собственные нужды, Гкал/год	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Потери в тепловых сетях, Гкал/год	677	677	677	677	677	677	677	677	677	677	677	677	677	677	677	677	677	677	677	677	677	677	677	677	677
Расчетная нагрузка на хозяйственные нужды, Гкал/год	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26
Присоединенная договорная тепловая нагрузка в горячей воде, в том числе	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,199
отопление и вентиляция	1,149	1,149	1,149	1,149	1,149	1,149	1,149	1,149	1,149	1,149	1,149	1,149	1,149	1,149	1,149	1,149	1,149	1,149	1,149	1,149	1,149	1,149	1,149	1,149	1,149
горячее водоснабжение	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
Резерв/дефицит тепловой мощности	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2
Располагаемая тепловая мощность нетто (с учетом затрат на собственные нужды) при аварийном выводе самого мощного котла	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8
Минимально допустимое значение тепловой нагрузки на коллекторах источника тепловой энергии при аварийном выводе самого мощного котла	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8

1.11 Балансы тепловой энергии (мощности) и перспективной тепловой нагрузки миникотельной с определением резервов (дефицитов) существующей располагаемой тепловой мощности источника тепловой энергии

Балансы тепловой мощности и перспективной тепловой нагрузки миникотельной с определением резервов (дефицитов) приведены в таблице ниже.

Резерв тепловой мощности к 2038 г. составляет 1,2 Гкал/ч.

Т а б л и ц а 11 — Балансы тепловой мощности и перспективной тепловой нагрузки миникотельной

Наименование показателя	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Установленная тепловая мощность, в том числе	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09
Располагаемая тепловая мощность станции	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09
Затраты тепла на собственные нужды, Гкал/год	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Потери в тепловых сетях, Гкал/год	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Расчетная нагрузка на хозяйственные нужды, Гкал/год	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Присоединенная договорная тепловая нагрузка в горячей воде, в том числе	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08
отопление и вентиляция	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08
горячее водоснабжение	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Резерв/дефицит тепловой мощности	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Располагаемая тепловая мощность нетто (с учетом затрат на собственные нужды) при аварийном выводе самого мощного котла	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6
Минимально допустимое значение тепловой нагрузки на коллекторах источника тепловой энергии при аварийном выводе самого мощного котла	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6

ЮгЭнергоИнжинирині

1.12 Балансы тепловой энергии (мощности) и перспективной тепловой нагрузки котельной № 3 с определением резервов (дефицитов) существующей располагаемой тепловой мощности источника тепловой энергии

Балансы тепловой мощности и перспективной тепловой нагрузки котельной № 3 с определением резервов (дефицитов) приведены в таблице ниже.

Резерв тепловой мощности к 2038 г. составляет 1,92 Гкал/ч

Т а б л и ц а 12 — Балансы тепловой мощности и перспективной тепловой нагрузки котельной № 3

Наименование показателя	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Установленная тепловая мощность, в том числе	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16
Располагаемая тепловая мощность станции	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16
Затраты тепла на собственные нужды, Гкал/год	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Потери в тепловых сетях, Гкал/год	1776	1776	1776	1776	1776	1776	1776	1776	1776	1776	1776	1776	1776	1776	1776	1776	1776	1776	1776	1776	1776	1776	1776	1776	1776
Расчетная нагрузка на хозяйственные нужды, Гкал/год	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
Присоединенная договорная тепловая нагрузка в горячей воде, в том числе	3,237	3,237	3,237	3,237	3,237	3,237	3,237	3,237	3,237	3,237	3,237	3,237	3,237	3,237	3,237	3,237	3,237	3,237	3,237	3,237	3,237	3,237	3,237	3,237	3,237
отопление и вентиляция	2,792	2,792	2,792	2,792	2,792	2,792	2,792	2,792	2,792	2,792	2,792	2,792	2,792	2,792	2,792	2,792	2,792	2,792	2,792	2,792	2,792	2,792	2,792	2,792	2,792
горячее водоснабжение	0,445	0,445	0,445	0,445	0,445	0,445	0,445	0,445	0,445	0,445	0,445	0,445	0,445	0,445	0,445	0,445	0,445	0,445	0,445	0,445	0,445	0,445	0,445	0,445	0,445
Резерв/дефицит тепловой мощности	1,92	1,92	1,92	1,92	1,92	1,92	1,92	1,92	1,92	1,92	1,92	1,92	1,92	1,92	1,92	1,92	1,92	1,92	1,92	1,92	1,92	1,92	1,92	1,92	1,92
Располагаемая тепловая мощность нетто (с учетом затрат на собственные нужды) при аварийном выводе самого мощного котла	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4
Минимально допустимое значение тепловой нагрузки на коллекторах источника тепловой энергии при аварийном выводе самого мощного котла	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4

1.13 Балансы тепловой энергии (мощности) и перспективной тепловой нагрузки котельной № 14 с определением резервов (дефицитов) существующей располагаемой тепловой мощности источника тепловой энергии

Балансы тепловой мощности и перспективной тепловой нагрузки котельной № 14 с определением резервов (дефицитов) приведены в таблице ниже.

Дефицит тепловой мощности к 2038 г. составляет -0,73 Гкал/ч

Т а б л и ц а 13 — Балансы тепловой мощности и перспективной тепловой нагрузки котельной № 14

Наименование показателя	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Установленная тепловая мощность, в том числе	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93
Располагаемая тепловая мощность станции	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93	4,93
Затраты тепла на собственные нужды, Гкал/год	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18
Потери в тепловых сетях, Гкал/год	2557	2557	2557	2557	2557	2557	2557	2557	2557	2557	2557	2557	2557	2557	2557	2557	2557	2557	2557	2557	2557	2557	2557	2557	2557
Расчетная нагрузка на хозяйственные нужды, Гкал/год	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29
Присоединенная договорная тепловая нагрузка в горячей воде, в том числе	4,91	4,91	4,91	4,91	4,91	5,0	5,4	5,4	5,6	5,6	5,6	5,6	5,6	5,6	5,6	5,6	5,6	5,6	5,6	5,6	5,6	5,6	5,6	5,6	5,6
отопление и вентиляция	4,6	4,6	4,6	4,6	4,6	4,62	4,71	4,73	4,77	4,77	4,77	4,77	4,77	4,77	4,77	4,77	4,77	4,77	4,77	4,77	4,77	4,77	4,77	4,77	4,77
горячее водоснабжение	0,31	0,31	0,31	0,31	0,31	0,34	0,69	0,72	0,88	0,88	0,88	0,88	0,88	0,88	0,88	0,88	0,88	0,88	0,88	0,88	0,88	0,88	0,88	0,88	0,88
Резерв/дефицит тепловой мощности	0,01	0,01	0,01	0,01	0,01	-0,04	-0,48	-0,53	-0,73	-0,73	-0,73	-0,73	-0,73	-0,73	-0,73	-0,73	-0,73	-0,73	-0,73	-0,73	-0,73	-0,73	-0,73	-0,73	-0,73
Располагаемая тепловая мощность нетто (с учетом затрат на собственные нужды) при аварийном выводе самого мощного котла	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67
Минимально допустимое значение тепловой нагрузки на коллекторах источника тепловой энергии при аварийном выводе самого мощного котла	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67

ЧАСТЬ 2. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ПЕРЕДАЧИ ТЕПЛОНОСИТЕЛЯ ДЛЯ КАЖДОГО МАГИСТРАЛЬНОГО ВЫВОДА С ЦЕЛЬЮ ОПРЕДЕЛЕНИЯ ВОЗМОЖНОСТИ (НЕВОЗМОЖНОСТИ) ОБЕСПЕЧЕНИЯ ТЕПЛОВОЙ ЭНЕРГИЕЙ СУЩЕСТВУЮЩИХ И ПЕРСПЕКТИВНЫХ ПОТРЕБИТЕЛЕЙ, ПРИСОЕДИНЕННЫХ К ТЕПЛОВОЙ СЕТИ ОТ КАЖДОГО ИСТОЧНИКА ТЕПЛОВОЙ ЭНЕРГИИ

2.1 Расход сетевой воды в подающих трубопроводах при переводе на фактическую нагрузку

В целях разработки последующих гидравлических режимов с учетом перспективных нагрузок выполнены наладочные гидравлические расчеты на договорные и фактические тепловые нагрузки потребителей. В таблице ниже приведены значения расходов сетевой воды в подающих трубопроводах источников теплоснабжения, полученных по результатам проведенных наладочных гидравлических расчетов.

T 7 14 D	~	~
	I D HODGIGIIIV TOVOODOODOO	Z IZCTOULIZACO TOTITOCIJOCZENIA
та олина 1 4 — гасходы сстсвой вод	ы в полающих груоопровола/	меточников теплоснаожения
Таблица 14 – Расходы сетевой вод		

Система		оды в подающем оводе, т/ч	Процент снижения расхода при переводе
теплоснабжения	при договорной нагрузке	при фактической нагрузке	на фактическую нагрузку, %
ТоТЭЦ	9 447	6 807	27
ТЭЦ ВАЗа	45 361	36 513	20
ИТОГО	54 808	43 320	20,9

Предложения по строительству и реконструкции тепловых сетей и сооружений на них сформированы на базе существующих фактических тепловых нагрузок потребителей с учетом перспективных до 2038 г. значений.

При разработке гидравлических режимов на фактическую тепловую нагрузку потребителей с учетом присоединяемых перспективных значений для всех потребителей было принято:

- системы отопления вновь подключаемых потребителей присоединены по независимой схеме и зависимой схеме;
- системы ГВС существующих потребителей переведены с открытой на закрытую схему;
- системы ГВС вновь подключаемых потребителей присоединены по закрытой схеме.

2.2 Расход сетевой воды в подающих трубопроводах при переводе на перспективную фактическую нагрузку

При разработке гидравлических режимов на фактическую тепловую нагрузку потребителей с учетом присоединяемых перспективных значений для всех потребителей было принято:

- системы отопления вновь подключаемых потребителей присоединены по независимой схеме и зависимой схеме;
- системы ГВС существующих потребителей переведены с открытой на закрытую схему;
- системы ГВС вновь подключаемых потребителей присоединены по закрытой схеме.

В таблице 38 приведен результат расчета гидравлического режима для основных тепловых выводов ТЭЦ ВАЗа обеспечивающих тепловой энергией Автозаводский район.

- 1. Существующий расход сетевой воды на каждый вывод, т/ч;
- 2. Расход сетевой воды на каждый вывод с учетом перспективной тепловой нагрузки, т/ч;

3. Максимально возможный расход сетевой воды на каждый вывод с учетом перспективной тепловой нагрузки, т/ч

Из таблицы видно, что уже при росте присоединённой тепловой нагрузки до планируемого к 2038 году показателю первый тепловой вывод не обеспечит качественным теплоснабжением потребителей в районе ПНС-1. Требуется увеличение диаметра первого тепловывода (см. Часть 6 Главы 8 Обосновывающих материалов).

Таблица15 – Расходы сетевой воды в магистральных выводах от станции с учетом перспективной нагрузки от ТЭЦ ВАЗа и оценкой дефицита (резерва)

Существующий и перспективный расход сетевой воды по выводам от ТЭЦ ВАЗа	I вывод, 2 Dy = 1000 мм. От ТЭЦ ВАЗа до ПНС-1	II вывод, 2 Dy = 1000 мм. От ТЭЦ ВАЗа до ПНС-2	III вывод, 2 Dy = 1000 мм. От ТЭЦ ВАЗа до ПНС-3
	6 319 Для	6 410Для	7 706 Для
Существующий расход	подключения	подключения	подключения
сетевой воды на каждый	перспективной	перспективной	перспективной
вывод, т/ч	нагрузки требуется	нагрузки требуется	нагрузки требуется
	перекладка	перекладка	перекладка
Расстояние от ТЭЦ ВАЗа до наиболее отдаленной камеры рассматриваемого теплового	6 400	8 223	7 600
вывода			
Располагаемый напор в конце	0	10	28
пути пьезометрического графика, м	U	10	20
Максимально возможный расход сетевой воды, т/ч	5 442	6 188	7 041

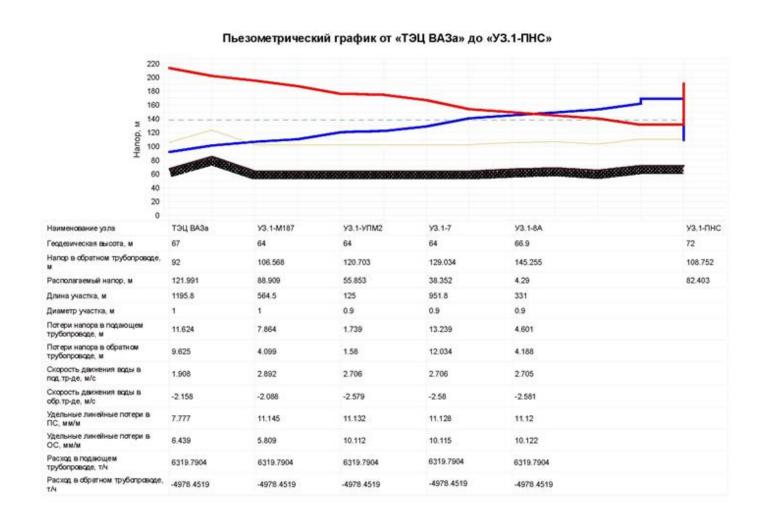


Рисунок 1 - Пьезометрический график от ТЭЦ ВАЗа до ПНС-1, І тепловывод с учетом фактической нагрузки

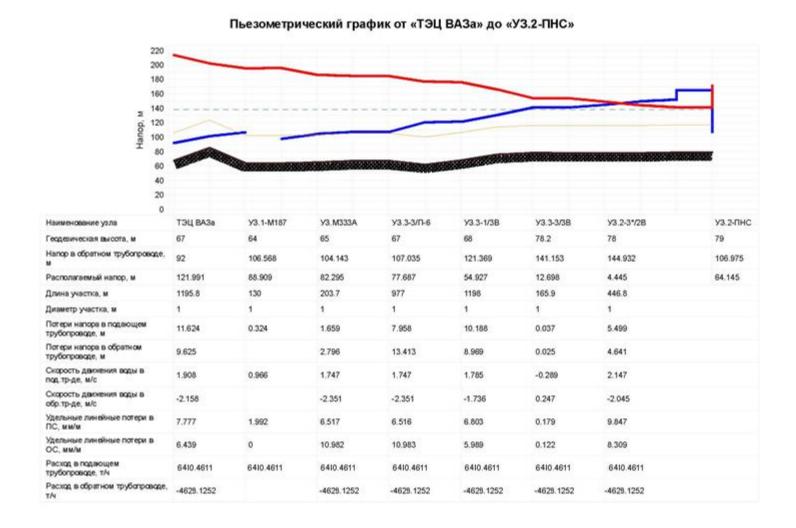


Рисунок 2 - Пьезометрический график от ТЭЦ ВАЗа до ПНС-2, ІІ тепловывод с учетом фактической нагрузки

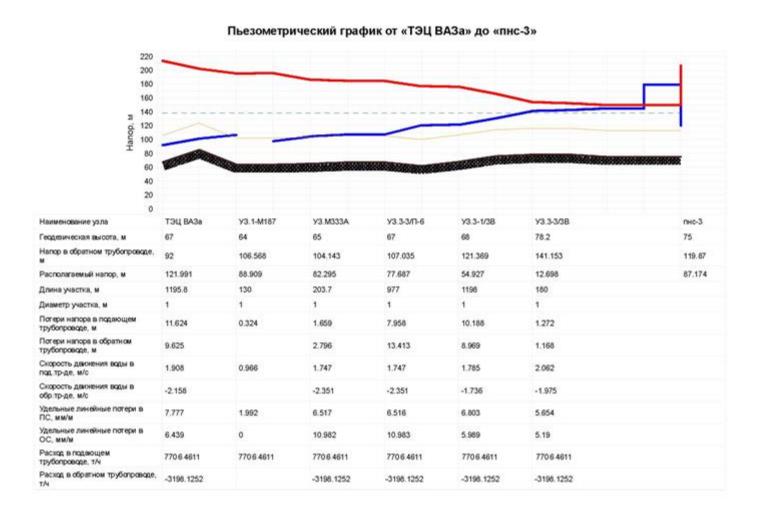


Рисунок 3 - Пьезометрический график от ТЭЦ ВАЗа до ПНС-3, III тепловывод с учетом фактической нагрузки

Для ликвидации дефицита мощности и создания возможности подключения новых потребителей требуется реконструкция тепловыводов с увеличением диаметров с Dy1000 мм на Dy 1200 мм, а именно:

- для 1-го ввода протяженность 2343 м;
- для 2-го ввода протяженность 2400 м;
- для 3-го ввода протяженность 2400 м.

В таблице ниже приведены результаты гидравлического расчета от ТоТЭЦ для основных трех тепловых выводов. Расходы сетевой воды, полученные по результатам гидравлических расчетов с учетом перспективных нагрузок и перевода тепловых нагрузок от Котельной № 2 и Котельной № 8 на ТоТЭЦ. Расчет производился по трем сценарным условиям увеличения присоединённой тепловой нагрузки:

- 1. Существующий расход сетевой воды на каждый вывод, т/ч;
- 2. Расход сетевой воды на каждый вывод с учетом перспективной тепловой нагрузки, т/ч;
- 3. Максимально возможный расход сетевой воды на каждый вывод с учетом перспективной тепловой нагрузки, т/ч

Таблица16 – Расходы сетевой воды в магистральных выводах от станции с учетом перспективной нагрузки от ТоТЭЦ и оценкой дефицита (резерва)

Существующий и перспективный расход сетевой воды по выводам от ТоТЭЦ	I магистраль, 2 Dy = 1000 мм. От ТоТЭЦ до 01-ТК-00560000	II магистраль, 2 Dy = 800 мм. От ТоТЭЦ до 02-ТК-20100000	III магистраль, 2 Dy = 1000 мм. От ТоТЭЦ до 03-ТК-00370000
Существующий расход сетевой воды на каждый вывод, т/ч	2 400	1 736	2 671
Расстояние от ТоТЭЦ до наиболее отдаленной камеры рассматриваемого теплового вывода	7 900	4 880	8 007
Располагаемый напор в конце пути пьезометрического графика, м	63	67	68
Расход сетевой воды существующих магистральных выводов с учетом перспективной тепловой нагрузки и планов по переводу тепловой нагрузки от Котельных № 2 и № 8, т/ч	4294 Максимально возможный	3106 Требуется перекладка участка см. пьезометр ниже и Часть 4 Глава 7 Обосновывающих материалов	4700 Максимально возможный

38

Пьезометрический график от «ТоТЭЦ» до «01-ТК-00560000»

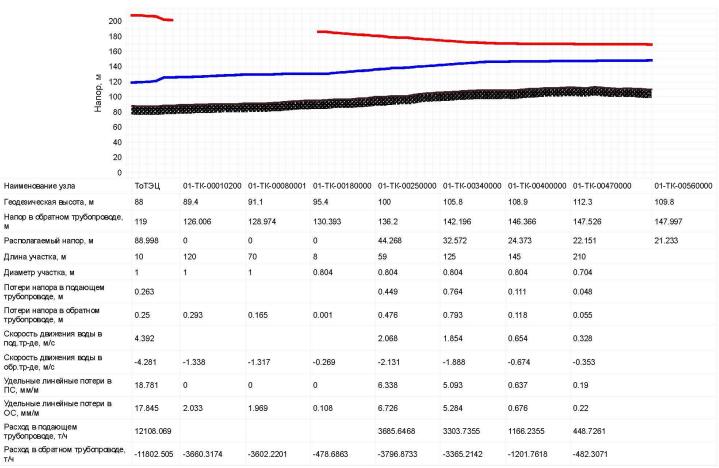


Рисунок 4 – Пьезометрический график от ТоТЭЦ, магистраль I с учетом перспективной тепловой нагрузки

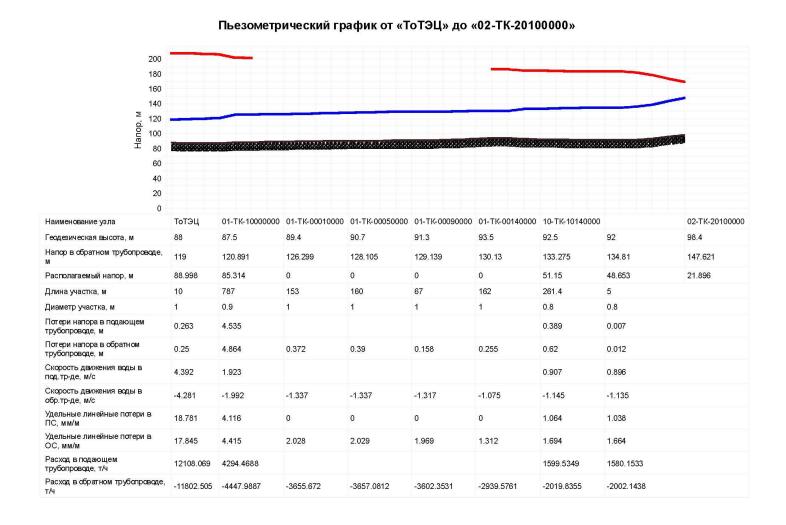


Рисунок 5 — Пьезометрический график от ТоТЭЦ, магистраль II с учетом перспективной тепловой нагрузки

200 180 160 140 120 Напор, I 100 80 60 40 20 Наименование узла ТоТЭЦ 01-TK-00010200 01-TK-00080001 04-TK-00030000 04-TK-00110000 09-TK-00070000 05-TK-00130000 03-TK-00370000 88 89.4 91.1 94.2 96.2 98.7 102.8 100.3 Геодезическая высота, м Напор в обратном трубопроводе, 119 126.006 128.974 130.111 131.785 137.184 142.369 143.632 0 58.757 56.358 44.997 32.755 31.085 Располагаемый напор, м 88.998 0 Длина участка, м 10 120 70 107.1 72.4 193.7 69.4 Диаметр участка, м 1 1 0.704 0.414 0.259 0.259 Потери напора в подающем 0.263 0.026 0.125 2.043 0.355 трубопроводе, м Потери напора в обратном 0.293 0.165 0.407 0.25 0.049 0.311 1.302 трубопроводе, м Скорость движения воды в 4.392 0.339 0.65 1.199 0.835 под.тр-де, м/с Скорость движения воды в -0.467 -1.025 -4.281 -1.338-1.317 -0.957 -0.893 обр.тр-де, м/с Удельные линейные потери в 0 0 0.203 1.44 4.267 18.781 8.788 ПС, мм/м Удельные линейные потери в 17.845 2.033 1.969 0.385 3.577 5.599 4.882 OC, MM/M Расход в подающем 12108.069 463.6782 307.0934 221.7321 154.405 трубопроводе, т/ч Расход в обратном трубопроводе, -11802.505 -3660.3174 -3602.2201 -638.7248 -484.4152 -176.9253 -165.1871 т/ч

Пьезометрический график от «ТоТЭЦ» до «03-ТК-00370000»

Рисунок 6 – Пьезометрический график от ТоТЭЦ, магистраль III с учетом перспективной тепловой нагрузки

41

ЧАСТЬ 3. ВЫВОДЫ О РЕЗЕРВАХ (ДЕФИЦИТАХ) СУЩЕСТВУЮЩЕЙ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ ПРИ ОБЕСПЕЧЕНИИ ПЕРСПЕКТИВНОЙ ТЕПЛОВОЙ НАГРУЗКИ ПОТРЕБИТЕЛЕЙ

Подробные балансы по каждому источнику тепловой энергии приведены в Части 1 к настоящей Главе Обосновывающих материалов.

Как следует из части 1 настоящей главы, во всех системах теплоснабжения при подключении перспективных тепловых нагрузок наблюдается резерв тепловой мощности на источниках тепловой энергии, за исключением котельной № 14, на которой наблюдается дефицит тепловой мощности. На котельной № 14 предусмотрено мероприятия по замене котельного оборудования в силу физического износа и низкой эффективности. На основании этого на котельной № 14 необходима замена котельных агрегатов с более высокой установленной мощностью.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Федеральный закон от 27.07.2010 N 190-ФЗ «О теплоснабжении».
- 2. Постановление Правительства Российской Федерации от 22.02.2012 № 154 «О требованиях к схемам теплоснабжения, порядку их разработки и утверждения»,
- 3. Постановление Правительства РФ от 08.08.2012 № 808 «Об организации теплоснабжения в Российской Федерации и о внесении изменений в некоторые акты Правительства Российской Федерации» (вместе с «Правилами организации теплоснабжения в Российской Федерации»),
- 4. «Методические рекомендации по разработке схем теплоснабжения». Утверждены приказом Минэнерго России и Минрегиона России от 29.12.2012 № 565/667.
- 5. Энергетическая стратегия России на период до 2030 года (распоряжение Правительства РФ от 13.11.2009 № 1715-р).
- 6. Энергетика России, стратегия развития (научное обоснование энергетической политики).
- 7. Сценарные условия развития электроэнергетики Российской Федерации до 2030 г. (выпуск 2010 г.).
- 8. Прогноз долгосрочного социально-экономического развития РФ на период до 2030 года (разработан Минэкономразвития России).
- 9. РД 153-34.1-20.329-2001 «Методические указания по испытанию водяных тепловых сетей на максимальную температуру теплоносителя».
- 10. РД 153-34.0-20.507-98 «Типовая инструкция по технической эксплуатации систем транспорта и распределения тепловой энергии (тепловых сетей)».
- 11. СНиП 41-02-2003 «Тепловые сети». Государственный комитет РФ по строительству и жилищно-коммунальному комплексу (Госстрой России). Москва, 2004.
- 12. ТСН 30-303-2000 МО «Планировка и застройка городских и сельских поселений» приняты и введены в действие распоряжением Минмособлстроя от 17.12.1999 № 339 в соответствии с постановлением Правительства Московской области от 13.04.1998 № 18/11.
- 13. ТСН 23-349-2003 Самарской области «Энергетическая эффективность жилых и общественных зданий» Нормативы по энергопотреблению и теплозащите приняты и введены в действие с 01.01.2004 распоряжением Департамента по строительству, архитектуре, жилищно-коммунальному и дорожному хозяйству Администрации Самарской области от 18.08.2003 № 335-р.
- 14. МДС 41-4.2000 «Методика определения количеств тепловой энергии и теплоносителя в водяных системах коммунального теплоснабжения (практическое пособие к «Рекомендациям по организации учета тепловой энергии и теплоносителей на предприятиях, в учреждениях и организациях жилищно-коммунального хозяйства и бюджетной сферы»)». Утверждена приказом Госстроя России от 06.05.2000 № 105.
- 15. СНиП 23-01-99 «Строительная климатология». Приняты и введены в действие с 01.01.2000 постановлением Госстроя России от 11.06.1999 № 45. Взамен СНиП 2.01.01-82.
- 16. Наладка водяных систем централизованного теплоснабжения, Апарцев М.М., Москва, «Энергоатомиздат», 1983 г.
- 17. Справочник строителя тепловых сетей, С. Е. Захаренко, Ю. С. Захаренко, И. С. Никольский, М. А. Пищиков; Под общ. ред. С. Е. Захаренко. 2-е изд., перераб. -М.: Энергоатомиздат, 1984 г.
- 18. Выбор оптимальной схемы энергоснабжения промышленного района: Методические указания / В.В. Бологова, А.Г. Зубкова, О.А. Лыкова, И.В. Мастерова. М.: Издательство МЭИ, 2006. 96 с.
- 19. Теплофикация и тепловые сети. Е.Я. Соколов. Москва, Издательство МЭИ, 2001 г.

ПРИЛОЖЕНИЕ 1

Программа вводов/выводов основного оборудования источников тепловой энергии филиала «Самарский» ПАО «Т Плюс» в г. о. Тольятти

ТЭЦ ВАЗа

№ п/п	Наименование оборудования	Ст. №	Год вывода оборудования
	Паровые турбины		
1	ПТ-60-130/13	1	
2	ПТ-60-130/13	2	
3	T-100-130	3	
4	T-100-130	4	
5	T-100-130	5	
6	T-100-130-2	6	
7	T-100/120-130-3	7	
8	T-100/120-130-3	8	
9	ПТ-135/165-130/15	9	
10	ПТ-135/165-130/15	10	
11	ПТ-140/165-130/15	11	
	Энергетические котлы		
12	ТГМ-84	1	
13	ТГМ-84	2	
14	ТГМ-84	3	
15	ТГМ-84	4	
16	ТГМ-84	5	
17	ТГМ-84	6	
18	ТГМ-84	7	
19	ТГМ-84	8	
20	ТГМ-84	9	
21	TΓME-464	10	
22	TΓME-464	11	
23	ΤΓΜΕ-464	12	
24	ΤΓΜΕ-464	13	
25	TΓME-464	14	
	ПВК	•	•
26	ПТВМ-100	1	c 01.01.15
27	ПТВМ-100	2	c 01.01.15
28	ПТВМ-100	3	

ЮгЭнергоИнжиниринг

№ п/п	Наименование оборудования	Ст. №	Год вывода оборудования
29	ПТВМ-100	4	
30	ПТВМ-100	5	
31	ПТВМ-100	6	
32	ПТВМ-100	7	
33	ПТВМ-100	8	
34	ПТВМ-100	9	
35	ПТВМ-100	10	
36	ПТВМ-180	11	c 01.01.15
37	ПТВМ-180	12	c 01.01.15
38	КВГМ-180	13	
39	КВГМ-180	14	
*Цветовые обозначения	·	·	
	агрегат работает (остается в работе)		
	вывод агрегата		

Тольяттинская ТЭЦ

	1 OJIDAT I HIICKA	<u> </u>	
№ п/п	Наименование оборудования	Ст. №	Год вывода оборудования
	Паровые турбі	ины	1
1	ПТ-65/75-130/13	1	
2	ПТ-65/75-130/13	2	
3	P-50-130/13-21	3	
4	P-50-130/13-21	4	
5	ПТ-80/100-130/13	5	
6	P-50-130/4-13	6	
7	T-100-130	7	
8	T-100-130	8	
9	P-100-130/15	9	
10	P-100-130/15	10	Выведена из эксплуатации с 01.08.11
·	Энергетические	котлы	
11	ТП-80	1	Выведен в длительную консервацию с 01.08.11
12	ТП-80	2	1
13	ТП-87	3	
14	ТП-87	4	
15	ТП-87	5	
16	ТП-87	6	
17	ТП-87	7	c 01.09.15
18	ТП-87	8	
19	ТП-87	9	
20	ТП-87	10	
21	ТП-87	11	
22	ТП-87	12	c 01.09.15
23	ТП-87	13	
	ПВК		
24	ПТВМ-100	1	c 01.01.15
25	ПТВМ-100	2	c 01.01.15
26	ПТВМ-100	3	
27	ПТВМ-100	4	c 01.01.15
28	ПТВМ-100	5	c 01.01.15
29	ПТВМ-100	6	

ЮгЭнергоИнжиниринг

№ п/п	Наименование оборудования	Ст. №	Год вывода оборудования
*Цветовые обоз	значения		
	агрегат работает (остается в работе)		
	вывод агрегата		

