ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ СХЕМА ТЕПЛОСНАБЖЕНИЯ ГОРОДСКОГО ОКРУГА ТОЛЬЯТТИ ДО 2038 ГОДА (АКТУАЛИЗАЦИЯ НА 2020 ГОД)

ГЛАВА 10 ПЕРСПЕКТИВНЫЕ ТОПЛИВНЫЕ БАЛАНСЫ

СОСТАВ РАБОТ

- Схема теплоснабжения г. о. Тольятти. Утверждаемая часть
 - Обосновывающие материалы к схеме теплоснабжения г. о. Тольятти:
- Глава 1. Существующее положение в сфере производства, передачи и потребления тепловой энергии для целей теплоснабжения
- Глава 2. Существующее и перспективное потребление тепловой энергии на цели теплоснабжения
- Глава 3. Электронная модель системы теплоснабжения г.о. Тольятти
- Глава 4. Существующие и перспективные балансы тепловой мощности источников тепловой энергии и тепловой нагрузки потребителей
- Глава 5. Мастер-план развития систем теплоснабжения г.о. Тольятти
- Глава 6. Существующие и перспективные балансы производительности водоподготовительных установок и максимального потребления теплоносителя теплопотребляющими установками потребителей, в том числе в аварийных режимах
- Глава 7. Предложения по строительству, реконструкции и техническому перевооружению источников тепловой энергии
- Глава 8. Предложения по строительству и реконструкции тепловых сетей
- Глава 9. Предложения по переводу открытых систем теплоснабжения (горячего водоснабжения) в закрытые системы горячего водоснабжения
- Глава 10. Перспективные топливные балансы
- Глава 11. Оценка надежности теплоснабжения
- Глава 12. Обоснование инвестиций в строительство, реконструкцию и техническое перевооружение
- Глава 13. Индикаторы развития систем теплоснабжения г.о. Тольятти
- Глава 14. Ценовые (тарифные) последствия
- Глава 15. Реестр единых теплоснабжающих организаций
- Глава 16. Реестр мероприятий схемы теплоснабжения
- Глава 17. Замечания и предложения к проекту схемы теплоснабжения
- Глава 18. Сводный том изменений, выполненных в доработанной и (или) актуализированной схеме теплоснабжения

СОДЕРЖАНИЕ

ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ	4
ЧАСТЬ 1 РАСЧЕТЫ ПО КАЖДОМУ ИСТОЧНИКУ ТЕПЛОВОЙ ЭНЕРГИИ ПЕРСПЕКТИВНЫ МАКСИМАЛЬНЫХ ЧАСОВЫХ И ГОДОВЫХ РАСХОДОВ ОСНОВНОГО ВИДА ТОПЛИВА ДЛЯ ЗИМНЕГО, ЛЕТНЕГО И ПЕРЕХОДНОГО ПЕРИОДОВ, НЕОБХОДИМОГО ДЛЯ ОБЕСПЕЧЕНИЯ НОРМАТИВНОГО ФУНКЦИОНИРОВАНИЯ ИСТОЧНИКОВ ТЕПЛОВОЙ ЭНЕРГИИ НА ТЕРРИТОРИИ ПОСЕЛЕНИЯ, ГОРОДСКОГО ОКРУГА	
1.1 Годовые расходы топлива источников ТоТЭЦ и ТЭЦ ВАЗа филиала «Самарский» ПАО «Т Плюс»	6
1.2 Годовые расходы топлива котельных г.о. Тольятти	14
1.3 Перспективные максимальные часовые и годовые расходы топлива по каждому источнику теплоснабжения	
ЧАСТЬ 2 РЕЗУЛЬТАТЫ РАСЧЕТОВ ПО КАЖДОМУ ИСТОЧНИКУ ТЕПЛОВОЙ ЭНЕРГИИ НОРМАТИВНЫХ ЗАПАСОВ ТОПЛИВА	19
2.1 Перспективные нормативные запасы аварийного топлива на ТЭЦ ВАЗа	20
2.2 Перспективные нормативные запасы аварийного топлива на ТоТЭЦ	20
2.3 Перспективные нормативные запасы аварийного топлива котельных	23
ЧАСТЬ 3 ВИД ТОПЛИВА, ПОТРЕБЛЯЕМЫЙ ИСТОЧНИКОМ ТЕПЛОВОЙ ЭНЕРГИИ, В ТОМ ЧИСЛЕ С ИСПОЛЬЗОВАНИЕМ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ ЭНЕРГИИ И МЕСТНЬ ВИДОВ ТОПЛИВА	IX
3.1 Вид топлива, потребляемый ТЭЦ ВАЗа	24
3.2 Вид топлива, потребляемый ТоТЭЦ	24
3.3 Виды топлива, потребляемые котельными	25
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	26
ПРИЛОЖЕНИЕ 1 Состав работающего оборудования источников Филиал «Самарский» ПАО «Т Плюс» в г. о. Тольятти при покрытии перспективной тепловой нагрузки	
ПРИЛОЖЕНИЕ 2 Макет расчета показателей источников Филиал «Самарский» ПАО «Т Плюс»	B 22

ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

АИТ – автономный источник тепловой энергии.

ПАО «Т Плюс» – Публичное акционерное общество «Т Плюс»

г. о. Тольятти – городской округ Тольятти.

ГВС – горячее водоснабжение.

ДУМИ – департамент по управлению муниципальным имуществом Мэрии г. о. Тольятти.

ЖКХ – жилищно-коммунальное хозяйство.

ИТП – индивидуальный тепловой пункт.

ИТЭ – источник тепловой энергии.

КА – котельный агрегат.

Котельная № 2 – производственная отопительная котельная № 2 г. о. Тольятти (Комсомольский район).

Котельная № 8 — отопительная котельная № 8 г. о. Тольятти (Комсомольский район, мкрн. Шлюзовой).

КПД – коэффициент полезного действия.

мкрн. – микрорайон.

МТС – магистральная тепловая сеть.

НГВ – насосная горячей воды.

НС – насосная станция.

НВЗТ – нормативный вспомогательный запас топлива.

НОЗТ – нормативный общий запас топлива.

ННЗТ – нормативный неснижаемый запас топлива.

НЭЗТ – нормативный эксплуатационный запас топлива.

Обосновывающие материалы – обосновывающие материалы к схеме теплоснабжения, являющиеся ее неотъемлемой частью, разработанные в соответствии с п. 18 Требований к схемам теплоснабжения (утверждены постановлением Правительства Российской Федерации от 22.02.2012 № 154 [2]).

ОВ – отопление и венитиляция.

ПВ – промышленная (техническая) вода.

ППР – планово-предупредительный ремонт.

ППУ – пенополиуретан.

ПТЭ – «Правила технической эксплуатации электрических станций и сетей Российской Федерации» (М.: СПО ОРГРЭС, 2003 г.).

 $PTH- \Phi$ едеральная служба по экологическому, технологическому и атомному надзору (Ростехнадзор).

СВ – система вентиляции.

СО – система отопления.

ТЕВИС – Открытое акционерное общество «ТЕВИС» (АО «ТЕВИС).

ТОА – теплообменный аппарат.

ТоТЭЦ – Тольяттинская ТЭЦ филиала «Самарский» ПАО «Т Плюс».

ТП – тепловой пункт.

ТС – тепловая сеть.

ТСО – теплоснабжающая организация.

ТУТС Тольятти – Территориальное управление по теплоснабжению в г. о. Тольятти, производственное предприятие филиала «Самарский» ПАО «Т Плюс».

ТФУ – теплофикационная установка.

ТЭР – топливно-энергетические ресурсы.

ТЭЦ ВАЗа – ТЭЦ Волжского автозавода филиала «Самарский» ПАО «Т Плюс».

УПТС – установки для подпитки тепловых сетей.

УУТЭ – узел учета тепловой энергии.

ХВП – химводоподготовка.

ХОВ – химически очищенная вода.

ХПВ – хозяйственно-питьевая вода.

ЦТП – центральный тепловой пункт.

ЭР – энергетический ресурс.

ЭСМ – энергосберегающие мероприятия.

ИСТОЧНИКУ ТЕПЛОВОЙ ЧАСТЬ 1 РАСЧЕТЫ ПО КАЖДОМУ ЭНЕРГИИ ПЕРСПЕКТИВНЫХ МАКСИМАЛЬНЫХ ЧАСОВЫХ ГОДОВЫХ ОСНОВНОГО ВИДА ТОПЛИВА ДЛЯ зимнего, ЛЕТНЕГО И ОБЕСПЕЧЕНИЯ ПЕРИОДОВ, **НЕОБХОДИМОГО** ЛЛЯ ФУНКЦИОНИРОВАНИЯ ИСТОЧНИКОВ ТЕПЛОВОЙ ЭНЕРГИИ НА ТЕРРИТОРИИ ПОСЕЛЕНИЯ, ГОРОДСКОГО ОКРУГА

1.1 Годовые расходы топлива источников ТоТЭЦ и ТЭЦ ВАЗа филиала «Самарский» ПАО «Т Плюс»

Для определения перспективных значений расходов топлива на источниках комбинированной выработки тепловой и электрической энергии была смоделирована математическая модель с использованием макетов по расчету номинальных и нормативных удельных расходов топлива на отпуск электроэнергии и тепла на ТЭЦ ВАЗа и ТоТЭЦ (далее «макет»), а также с использованием утвержденной нормативно-технической документации по топливоиспользованию [1], [2].

Расчеты в математической модели выполнены с учетом разбиения года на характерные периоды:

- летний период принимался равным среднему значению продолжительности неотопительного периода за последние пять лет;
- зимний период принимался равным продолжительности трех зимних месяцев (декабрь, январь, февраль);
- переходный период определялся как разница между отопительным и зимним периодом, усредненный за последние 5 лет.

На основе существующих данных по продолжительности отопительного периода и посуточной статистики по температуре наружного воздуха за 2017-2019 гг. была сформирована таблица, представленная ниже.

Помисморомио	Период				
Наименование	Зимний	Переходный	Летний		
Продолжительность, ч	2160	2611	3989		
Спелнесуточная температура наружного возлуха °C	-10	+2	₊ 19		

Таблица 1 – Продолжительность периодов, среднесуточная температура воздуха

Данные по составу работающего оборудования, а также по распределению тепловых нагрузок между турбоагрегатами и ПВК для каждого из периодов принимались на основе фактической информации о работе станции, представленных в «макетах». Перспективные значения нагрузок оборудования приведены в приложении 1.

Количество энергетических котлов выбирается после определения загрузки турбин с использованием диаграмм режимов турбоагрегатов и необходимого количества острого пара в голову турбин. Электрическая энергия вырабатывается на тепловом потреблении, диафрагмы турбин закрыты, минимальный пропуск пара в конденсаторы в зимний период. Перспективные значения в отпуске электрической энергии определены исходя из работы станции по «тепловому» графику. Распределение затрат топлива, при комбинированной выработке, на тепловую и электрическую энергию проводился по «физическому» методу.

В таблице 2 и 3 приведены перспективные технико-экономические показатели источников комбинированной выработки ПАО «Т Плюс» для варианта развития Б.1, в силу принятия данного варианта развития приоритетным.

Согласно п. 72 ПП РФ от 22.02.2012 № 154 [6], перспективные топливные балансы при наличии в планируемом периоде использования природного газа в качестве основного топлива на источниках тепловой энергии должны быть согласованы с программой газификации поселения, городского округа.

Таблица 2 – Топливно-энергетический баланс ТЭЦ ВАЗа, функционирующей в комбинированном режиме

Показатель	Един. изм.	2018	2019	2020	2021	2022	2023	2028	2038
Отпуск тепловой энергии, в том числе	тыс. Гкал	5489,4	5096,0	5102,4	5102,4	5102,6	5119,1	5262,3	5333,7
хозяйственные нужды	тыс. Гкал	26,2	24,1	24,4	24,4	24,4	24,5	25,1	25,5
Выработка электрической энергии всего, в том числе	тыс. МВт-ч	3017,6	2801,3	2804,8	2804,8	2805,0	2814,0	2892,8	2932,0
Отпуск электрической энергии	тыс. МВт-ч	2599,2	2382,9	2386,4	2386,4	2386,5	2395,6	2474,3	2513,6
Затрачено условного топлива всего, в том числе	тыс. т условного топлива	1550,5	1432,7	1434,5	1434,4	1434,3	1439,1	1481,3	1502,3
на выработку электрической энергии	тыс. т условного топлива	618	565,2	566,1	566,1	566,1	568,3	587,2	596,6
на выработку тепловой энергии	тыс. т условного топлива	932,5	867,5	868,4	868,3	868,2	870,8	894,1	905,7
УРУТ на выработку электрической энергии	г/кВт-ч	204,8	201,8	201,8	201,8	201,8	202,0	203,0	203,5
УРУТ на выработку тепловой энергии	кг/Гкал	169,1	169,4	169,4	169,4	169,3	169,3	169,1	169,0
УРУТ на отпуск электрической энергии	г/кВт-ч	237,8	237,2	237,2	237,2	237,2	237,2	237,3	237,4
УРУТ на отпуск тепловой энергии	кг/Гкал	169,9	170,2	170,2	170,2	170,1	170,1	169,9	169,8

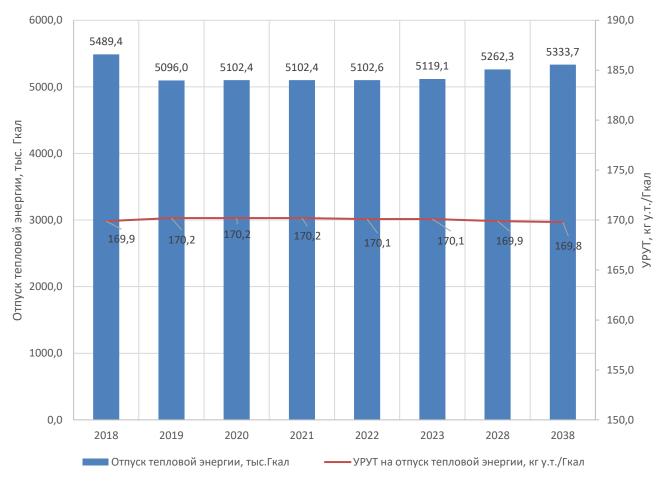


Рисунок 1 – Прогнозируемый отпуск тепловой энергии потребителям и динамика УРУТ на отпуск тепловой энергии ТЭЦ ВАЗа

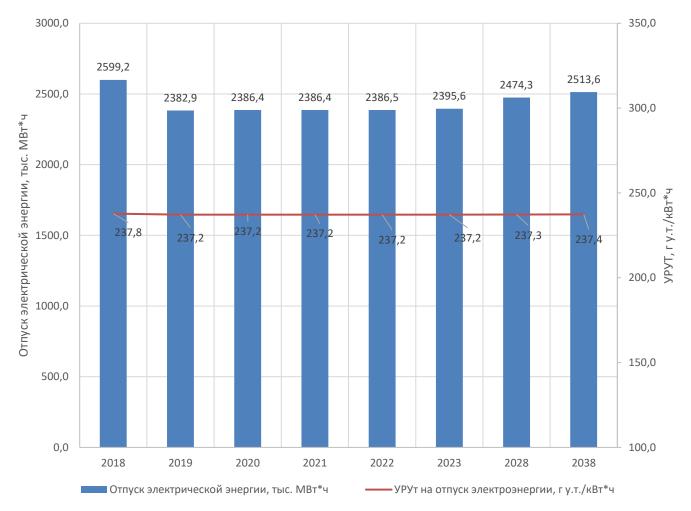


Рисунок 2 – Прогнозируемый отпуск электрической энергии потребителям и динамика УРУТ на отпуск электрической энергии ТЭЦ ВАЗа

Таблица 3 – Топливно-энергетический баланс ТоТЭЦ, функционирующей в комбинированном режиме, при варианте развития Б1

miga s rominibno sneprem i		7, T	7 1 7	,		том режиме	, F F	F	
Показатель	Един. изм.	2018	2019	2020	2021	2022	2023	2028	2038
Отпуск тепловой энергии, в том числе	тыс. Гкал	4463,73	4030,37	4033,57	4034,98	4036,28	4041,23	4084,94	4106,62
хозяйственные нужды	тыс. Гкал	25,36	22,90	22,92	22,92	22,93	22,96	23,21	23,33
Выработка электрической энергии	тыс. МВт- ч	1539,18	1389,75	1390,85	1391,34	1391,78	1393,49	1408,56	1416,04
Отпуск электрической энергии	тыс. МВт-	1317,52	1168,71	1168,82	1169,26	1169,65	1173,22	1188,32	1195,79
Затрачено условного топлива всего, в том числе	тыс. т условного топлива	1062	960	963,8	965,2	966,4	967,2	977,1	982,1
на выработку электрической энергии	тыс. т условного топлива	302,2	268,4	269,2	270,1	271,1	271	273,9	275,4
на выработку тепловой энергии	тыс. т условного топлива	747,4	676,8	677,3	677,6	677,9	678	684,5	687,8
УРУТ на выработку электрической энергии	г/кВт-ч	196,3	193,1	193,6	194,1	194,8	194,5	194,5	194,5
УРУТ на выработку тепловой энергии	кг/Гкал	166,5	167,0	167,0	167,0	167,0	166,8	166,6	166,5
УРУТ на отпуск электрической энергии	г/кВт-ч	230,1	229,6	230,3	231	231,8	231	230,5	230,3
УРУТ на отпуск тепловой энергии	кг/Гкал	167,4	167,9	167,9	167,9	167,9	167,8	167,6	167,5

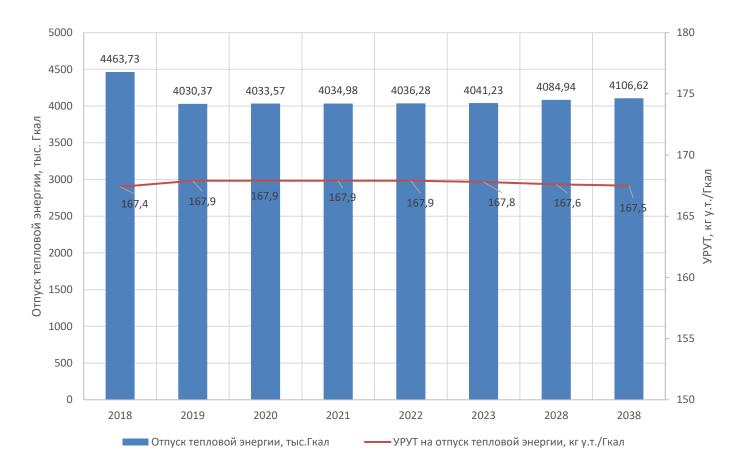


Рисунок 3 – Прогнозируемый отпуск тепловой энергии потребителям и динамика УРУТ на отпуск тепловой энергии ТоТЭЦ

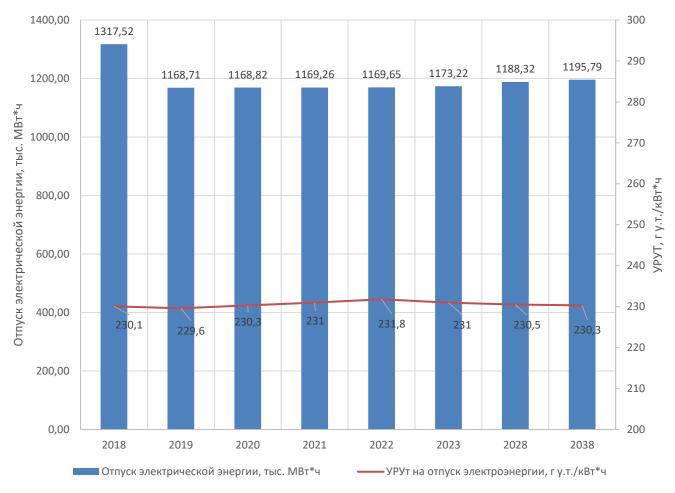


Рисунок 4 – Прогнозируемый отпуск электрической энергии потребителям и динамика УРУТ на отпуск электрической энергии ТоТЭЦ

1.2 Годовые расходы топлива котельных г.о. Тольятти

Расход топлива для котельных к 2038 году рассчитывался по формуле:

$$B = b_{\text{т}} \cdot Q_{\text{прис.}} / (1 - \alpha_{\text{пот}}),$$
 где:

 $b_{\scriptscriptstyle \rm T}$ – удельный расход топлива на отпуск тепловой энергии от источника

Удельные расходы топлива для котельных с режимными картами от 2018 года, принимались до 2021 года соответствии с режимными картами. Для всех котельных удельные расходы топлива на перспективный период 2038 г. принимались в соответствии с Приказом Минэнерго России № 323 от 30.12.2008 года и паспортыми данными котлов.

В таблице ниже представлены расходы топлива для котельных г. о. Тольятти для варианта развития Б.1.

Таблица 4 – Топливный баланс по котельным г. о. Тольятти

,	Вариант	TI TI TO ROTESIBILBI			Pac	ход условног	о топлива, т	у.т.		
Источник	развития	Показатель	2018	2019	2020	2021	2022	2023	2028	2038
	Отпуск теплово	Отпуск тепловой энергии, Гкал			528 854	532 144	535 433	538 722	562 579	605 909
Котельная № 2	Удельный расход то	оплива, кг у.т./Гкла	156,59	156,25	156,25	156,25	154,66	154,66	154,66	154,66
	Расход условног	о топлива, т у.т.	83792,44	84731,54	85261,80	85792,21	85441,44	85966,28	89773,25	96687,61
	Отпуск теплово	й энергии, Гкал	191 622	187 134	188 086	189 038	189 990	190 942	196 653	206 172
Котельная № 8	Удельный расход то	оплива, кг у.т./Гкла	159,85	156,93	156,93	156,93	155,09	155,09	155,09	155,09
	Расход условног	го топлива, т у.т.	31651,09	30344,43	30498,80	30653,17	30446,86	30599,42	31514,64	33040,11
	Отпуск теплово	й энергии, Гкал	9 115	8 894	9 031	9 169	9 306	9 444	9 581	9 719
Котельная № 14	Удельный расход то	оплива, кг у.т./Гкла	184,87	172,16	172,16	172,16	172,16	172,16	172,16	172,16
	Расход условног	о топлива, т у.т.	1695,57	1540,74	1564,47	1588,38	1612,11	1636,02	1659,75	1683,66
	Отпуск тепловой энергии, Гкал		1 865	1 893	1 893	1 893	1 893	1 893	1 893	1 893
Котельная № 4	Удельный расход то	202,61	189,79	189,79	189,79	173,10	173,10	173,10	173,10	
	Расход условног	378,85	360,21	360,21	360,21	328,53	328,53	328,53	328,53	
	Отпуск теплово	63373	64 920	65 396	65 872	66 348	66 824	69 680	74 440	
Котельная БМК- 34	Удельный расход то	оплива, кг у.т./Гкла	158,30	156,1	156,1	156,1	156,1	156,1	156,1	156,1
34	Расход условног	о топлива, т у.т.	10342,29	10447,44	10524,04	10600,64	10677,24	10753,84	11213,45	11979,47
	Отпуск теплово	й энергии, Гкал	1 439	1 439	1 439	1 439	1 439	1 439	1 439	1 439
Котельная № 7	Удельный расход то	оплива, кг у.т./Гкла	181,13	164,92	164,92	164,92	164,92	164,92	164,92	164,92
	Расход условног	о топлива, т у.т.	265,38	241,63	241,63	241,63	241,63	241,63	241,63	241,63
	Отпуск теплово	й энергии, Гкал	202,00	208	208	208	208	208	208	208
Миникотельная	Удельный расход то	оплива, кг у.т./Гкла	161,78	160	160	160	160	160	160	160
	Расход условног	Расход условного топлива, т у.т.			33,28	33,28	33,28	33,28	33,28	33,28
Котельная № 6	Отпуск теплово	й энергии, Гкал	10786,00	10 786	10 786	10 786	10 786	10 786	10 786	10 786
10 TO TO IDITAN 312 0	Удельный расход то	оплива, кг у.т./Гкла	157,70	156,43	156,43	156,43	155,60	155,60	155,60	155,60

Ш	Вариант	П		Расход условного топлива, т у.т.								
Источник	развития	Показатель	2018	2019	2020	2021	2022	2023	2028	2038		
	Расход условног	го топлива, т у.т.	2084,74	2067,88	2067,88	2067,88	2056,95	2056,95	2056,95	2056,95		
	Отпуск теплово	й энергии, Гкал	6769,00	6 769	6 769	6 769	6 769	6 769	6 769	6 769		
Котельная № 3	Удельный расход т	160,21	158,6	158,6	158,6	158,6	158,6	158,6	158,6			
	Расход условног	1087,33	1076,37	1076,37	1076,37	1076,37	1076,37	1076,37	1076,37			
7.0	Отпуск теплово	Отпуск тепловой энергии, Гкал			60	101	183	591	673	673		
Котельная площадки №1	Удельный расход т	Удельный расход топлива, кг у.т./Гкла			158,7	158,7	158,7	158,7	158,7	158,7		
	Расход условног	го топлива, т у.т.		3,11	9,81	16,51	29,91	96,61	110,01	110,01		
	Отпуск теплово	й энергии, Гкал		995	995	1153	1378	2502	2727	2727		
Котельная площадки №9	Удельный расход т	Удельный расход топлива, кг у.т./Гкла		158,7	158,7	158,7	158,7	158,7	158,7	158,7		
, , ,	Расход условног	го топлива, т у.т.		162,64	162,64	188,47	225,25	408,98	445,76	445,76		

^{*}Перспективное строительство котельной

1.3 Перспективные максимальные часовые и годовые расходы топлива по каждому источнику теплоснабжения

В таблице ниже приведены значения максимального часового расхода природного газа на источниках тепловой и электрической энергии, которые должны быть учтены в перспективной программе газификации г. о. Тольятти.

Таблица 5 — Значения перспективных максимальных часовых расходов топлива по источникам г.о Тольятти

N п/п	Наименование источника	Вид топлива									
			2018	2019	2020	2021	2022	2023	2028	2038	
1	ТЭЦ ВАЗ	газ	241,8	250,5	250,9	250,9	250,7	251,8	256,2	265,4	
2	ТоТЭЦ	газ	72,9	76,0	76,1	77,5	77,5	77,8	79,2	82,2	
3	Котельная № 2	газ	45,3	46,8	46,9	47,0	46,6	46,7	46,9	47,0	
4	Котельная № 8	газ	18,6	19,2	19,3	19,4	19,2	19,3	19,4	19,5	
5	Котельная № 14	газ	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	
7	Котельная № 4	газ	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	
8	Котельная БМК- 34	газ	3,3	3,5	3,5	3,6	3,7	3,7	3,7	3,7	
9	Котельная № 7	газ	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	
10	Миникотельная к ж/д	газ	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
11	Котельная № 6	газ	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	
12	Котельная № 3	газ	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	
13	Котельная ФГБУН ИЭВБРАН	газ	н/д								
14	Котельная площадки № 1	газ	0,0	0,0	0,1	0,1	0,2	0,7	0,8	0,8	
15	Котельная площадки № 9	газ	0,0	1,1	1,1	1,3	1,6	2,9	3,1	3,1	
Всего природный газ 383,2 398,4 399,3 401,1 400,8 404,2 410,7 423							423,0				
	Итого		383,2	398,4	399,3	401,1	400,8	404,2	410,7	423,0	

В таблице ниже и на рисунке 5 показана динамика изменения расхода условного топлива комбинированными источниками теплоснабжения для приоритетного варианта развития Б.1.

Таблица 6 - Динамика изменение расхода топлива источниками в зависмости от варианта развития системы теплоснабжения

Вариант		Расход условного топлива, тыс. т у.т.											
развития	2019	2020	2021	2022	2023	2028	2038						
Б.1	2393,4	2399,9	2405,6	2409,8	2416,4	2478,3	2508,9						

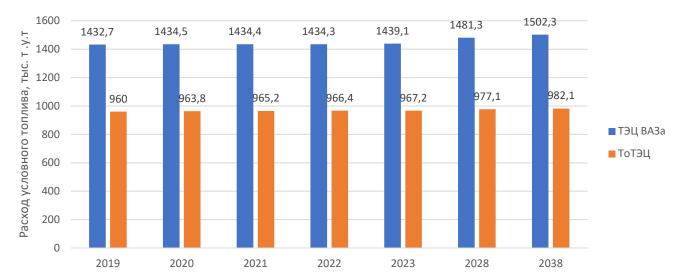


Рисунок 5 — Расход условного топлива источниками тепловой энергии к 2038 году

ЧАСТЬ 2 РЕЗУЛЬТАТЫ РАСЧЕТОВ ПО КАЖДОМУ ИСТОЧНИКУ ТЕПЛОВОЙ ЭНЕРГИИ НОРМАТИВНЫХ ЗАПАСОВ ТОПЛИВА

Запасы основного топлива создаются для поддержания базового режима работы тепловых электростанций.

Запасы резервного топлива (уголь, мазут, торф) создаются на тепловых электростанциях, которые используют газ в качестве основного вида топлива, для поддержания работы в базовых режимах при частичном или полном отсутствии основного топлива.

Запасы аварийного топлива (дизельного или газотурбинного) создаются на тепловых электростанциях, парогазовые установки и (или) газотурбинные установки которых используют газ в качестве основного вида топлива, для поддержания работы при полном отсутствии основного топлива.

Запасы вспомогательного (НВЗТ) топлива создаются на тепловых электростанциях, которые используют уголь и (или) торф в качестве основного вида топлива, для поддержания работы при подсветках и (или) растопках котлоагрегатов, а также при возникновении аварийных нарушений в системах топливоподачи и топливоприготовления.

ННЗТ создается для обеспечения безаварийной работы оборудования с минимальной расчетной электрической и тепловой нагрузкой по условиям самого холодного месяца года за предыдущие пять лет, в целях поддержания положительных температур в главном корпусе, вспомогательных зданиях и сооружениях, а также для бесперебойного энергоснабжения потребителей, указанных ниже, и используют его при полном отсутствии НЭЗТ.

В расчете ННЗТ учитывается необходимость бесперебойного энергоснабжения:

- потребителей электрической энергии, ограничение режима потребления электрической энергии которых ниже уровня аварийной брони не допускается в соответствии с Правилами полного и (или) частичного ограничения режима потребления электрической энергии, утвержденными постановлением Правительства Российской Федерации от 4 мая 2012 г. № 442 (Собрание законодательства Российской Федерации, 2012, № 23, ст. 3008; 2013, № 1, ст. 45, ст. 68; № 5, ст. 407);
- объектов систем теплоснабжения (тепловых пунктов, насосных станций, собственных нужд источников тепловой энергии) в отопительный период.

Владельцы тепловых электростанций создают НЭЗТ для надежной работы тепловой электростанции в целях обеспечения выполнения показателей производства электрической и тепловой энергии сводного прогнозного баланса производства и поставок электрической энергии в рамках Единой энергетической системы России по субъектам Российской Федерации, утверждаемого в установленном порядке [9].

2.1 Перспективные нормативные запасы аварийного топлива на ТЭЦ ВАЗа

В качестве резервного топлива на станции используется мазут. Проектная, с учетом максимальной высоты налива, емкость мазутохранилища - 111,5 тыс. т, но так как резервуар №6 выведен из эксплуатации, емкость составляет - 103,0 тыс. т мазута.

Размер ННЗТ на 1 октября 2018 г. составляет 15,900 тыс. т мазута. На ТЭЦ ВАЗа изменений в структуре топлива, нагрузке неотключаемых потребителей не намечается, поэтому перспективные значения ННЗТ принимаются на уровне утвержденной величины на 01.10.2018.

Размер НЭЗТ на 1 октября 2018 г. составляет 11,733 тыс. т мазута. При расчетах НЭЗТ в случаях, когда одно из значений среднесуточного расхода топлива за последние три года имеет нулевое или близкое к нулю значение в январе и апреле, НЭЗТ на 1 октября планируемого года принимается на уровне наибольшего нормативного значения в течение трех лет, предшествующих планируемому году [9]. В таблице 10 показана динамика фактического среднесуточного расхода мазута за январь и апрель 2016-2018 гг.

Таблица 7 – Динамика среднесуточного расхода мазута

Месяц	Среднесуточный расход мазута, тыс. т						
утесяц	2016	2017	2018				
Январь	0,00	0,00	0,00				
Апрель	0,00	0,00	0,00				

За перспективный период 2019-2038 гг. использование мазута на станции в качестве резервного топлива не планируется. В соответствие с этим, НЭЗТ на период с 2019 по 2038 гг. равен 18,560 тыс. т мазута.

2.2 Перспективные нормативные запасы аварийного топлива на ТоТЭЦ

В качестве резервного топлива на станции используется уголь. Мазут используется в качестве вспомогательного топлива.

Размер ННЗТ на 1 октября 2018 г. составляет 13,100 тыс. т угля и 0,600 тыс. т мазута. На ТоТЭЦ изменений в структуре топлива, нагрузке неотключаемых потребителей не намечается, поэтому перспективные значения ННЗТ принимаются на уровне утвержденной величины на 01.10.2018.

Размер НЭЗТ на 1 октября 2018 г. составляет 47,378 тыс. т угля. При расчетах НЭЗТ в случаях, когда одно из значений среднесуточного расхода топлива за последние три года имеет нулевое или близкое к нулю значение в январе и апреле, НЭЗТ на 1 октября планируемого года принимается на уровне наибольшего нормативного значения в течение трех лет, предшествующих планируемому году [9]. В таблице 8 показана динамика фактического среднесуточного расхода угля за январь и апрель 2016-2018 гг.

Таблица 8 – Динамика среднесуточного расхода угля

Moogy	Среднесуточный расход топлива, тыс. т						
Месяц	2016	2017	2018				
Январь	0,00	0,00	0,00				
Апрель	0,00	0,00	0,00				

В связи с тем, что в январе и апреле уголь не расходовался на выполнение производственной программы, расчет НЭЗТ проводится только на замещение, т.е для компенсации ограничения поставки газа при значительных понижениях температуры наружного воздуха в зимний период [3]:

HЭЗТ
$$_{\text{зам}}^{\text{угл}} = (G_{\text{дек}} + G_{\text{янв}}) \cdot n \cdot d \cdot \frac{Q_{\text{н(газ)}}^{\text{p}}}{Q_{\text{н(уголь)}}^{\text{p}}},$$

где, $G_{\text{дек}}$, $G_{\text{янв}}$ — среднесуточный расход газа в декабре и январе планируемого года, млн. м^3 /сут.;

n – количество суток замещения основного топлива резервным (14 суток в январе и декабре);

d – объем топлива для замещения (принимается равным 40 %);

 $Q_{_{\rm H}\,({\rm \Gamma a}3)}^{p},\,Q_{_{\rm H}\,({\rm у \Gamma o} {\rm n} {\rm b})}^{p}$ — низшая теплотворная способность газа (ккал/м³) и угля (ккал/кг).

Размер НВЗТ на 1 октября 2018 г. составляет 2,480 тыс. т мазута. Расчет вспомогательного топлива производится по следующей зависимости:

$$HB3T = H93T_{3aM}^{yr\pi} \cdot \frac{a}{b},$$

где, а — суммарная производительность мазутных форсунок на угольных котлах (2,4 т/ч); b — расход угля на котел ТП-87 на номинальной нагрузке (42 т/ч).

Динамика изменения запаса топлива ТоТЭЦ и ТЭЦ ВАЗа приведена в таблице ниже.

Таблица 9 – Перспективные значения запаса топлива на источниках комбинированной выработки г. о. Тольятти

Источник	Вариант развити	Топливо	Запас	Запас топлива на 1 октября, тыс. т							
	Я			2018	2019	2020	2021	2022	2023	2028	2038
			ОНЗТ	27,633	27,633	27,633	27,633	27,633	27,633	27,633	27,633
	При		ННЗТ	15,9	15,9	15,9	15,9	15,9	15,9	15,9	15,9
ТЭЦ ВАЗа	любом варианте	Мазут	НЭЗТ	11,733	11,733	11,733	11,733	11,733	11,733	11,733	11,733
	развития		ННЗТ	15,9	15,9	15,9	15,9	15,9	15,9	15,9	15,9
			НЭ3Т	11,733	11,733	11,733	11,733	11,733	11,733	11,733	11,733
		Мазут	ОНЗТ	3,08	3,08	3,08	3,08	3,08	3,08	3,08	3,08
			ННЗТ	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6
			НЭ3Т	2,48	2,48	2,48	2,48	2,48	2,48	2,48	2,48
T TOIL	Г 1		ОНЗТ	60,478	60,478	60,478	60,478	60,478	60,478	60,478	60,478
ТоТЭЦ	Б.1		ННЗТ	13,1	13,1	13,1	13,1	13,1	13,1	13,1	13,1
		Уголь	НЭЗТ	47,378	47,378	47,378	47,378	47,378	47,378	47,378	47,378
			ННЗТ	13,1	13,1	13,1	13,1	13,1	13,1	13,1	13,1
			НЭ3Т	47,378	47,378	47,378	47,378	47,378	47,378	47,378	47,378

2.3 Перспективные нормативные запасы аварийного топлива котельных

В таблице нижу представлены результаты оценки перспективных значений нормативов запасов топлива в 2038 году, рассчитанные на основании перспективных тепловых нагрузок и перспективного отпуска тепла.

Таблица 10 – Перспективные значения нормативов запасов топлива в 2038 г.

№ пп.	Наименование организации	Топливо	ОНЗТ, тыс. тонн	НЭЗТ, тыс. тонн	ННЗТ, тыс. тонн
1	Филиал «Самарский» ПАО «Т Плюс»	Мазут	6,615	4,908	1,707
2	Котельная № 2	Мазут	4,360	0,940	3,420
3	Котельная № 8	Мазут	0,970	0,340	0,630
4	Котельная № 6	Мазут	0,070	0,020	0,050

ЧАСТЬ З ВИД ТОПЛИВА, ПОТРЕБЛЯЕМЫЙ ИСТОЧНИКОМ ТЕПЛОВОЙ ЭНЕРГИИ, В ТОМ ЧИСЛЕ С ИСПОЛЬЗОВАНИЕМ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ ЭНЕРГИИ И МЕСТНЫХ ВИДОВ ТОПЛИВА

3.1 Вид топлива, потребляемый ТЭЦ ВАЗа

На ТЭЦ ВАЗа основным топливом является природный газ, резервным топливом – мазут.

Природный газ на ТЭЦ ВАЗа поступает по двум газопроводам диаметром 720мм с давлением до 12 кгс/см² - ГРП-1 от ГРС-19, ГРП-2 от ГРС-19А, и в зависимости от нагрузки станции давление газа непосредственно после регуляторов составляет от 0,85 кгс/см² до 1,2 кгс/см².

Газопроводы от ГРС-19 и ГРС-19А до кранов Г-69-I и Г-68-II (граница раздела - ограждение территории ТЭЦ ВАЗа) находятся в ведении и обслуживании филиала «Тольяттигаз» ООО «СВГК».

Газовые краны Γ -69-I, Γ -68-II и все газопроводы после них (по ходу газа), Γ РП-1,2 находятся в ведении ТЭЦ ВАЗа.

ГРП-1,2 находятся в параллельной работе, на них производится автоматическое регулирование давления газа 0.7кг/см². Для стабилизации давления газа перед котлами датчики давления газа ГРП-1,2 установлены в середине магистрального газопровода энергетических котлов на отборе газа к к/а №7 до задвижки 7Г-1 и на отборе газа к к/а №5 до задвижки 5Г-1.

Газ от ГРП-1 по двум наружным газопроводам Dy=1020 мм и Dy=820 мм поступает соответственно к энергетическим и водогрейным котлам первой и второй пиковых котельных (первый ввод).

Газ от ГРП-2 по наружным газопроводам направляется:

- а) по газопроводу Dy=720 мм к пиковой котельной № 3;
- б) по газопроводу Dy=720 мм к пиковым котельным № 1,2 (второй ввод);
- в) по газопроводу Dy=1020 мм к энергетическим котлам (второй ввод).

Мазутное хозяйство предназначено для приема, хранения и подготовки мазута к сжиганию, бесперебойного снабжения подогретым и профильтрованным топочным мазутом в количестве, требуемом нагрузки котлов, и с необходимым давлением, вязкостью и температурой.

Для обеспечения выполнения перечисленных задач на мазутном хозяйстве имеются следующие участки:

- внутренние ж.д. пути;
- приемно-сливное устройство, эстакады слива №1,2 с ПБ-1-4;
- мазутохранилище с металлическими резервуарами № 1-5 V=10000 м 3 каждый; №7-10 V=20000 м 3 :
 - мазутонасосные №1,2;
 - эстакады парамазутопроводов от мазутонасосных до главного корпуса.

3.2 Вид топлива, потребляемый ТоТЭЦ

На ТоТЭЦ основным видом топлива является природный газ, резервным топливом – уголь. Мазут является вспомогательным видом топлива.

Газ к энергетическим и водогрейным котлам поступает по газопроводам от трёх ГРП, с пропускной способностью: ГРП-1-80 тыс. $\text{нм}^3/\text{час}$, ГРП-2-160 тыс. $\text{нм}^3/\text{час}$; ГРП-3-320 тыс $\text{нм}^3/\text{час}$. Газ на ГРП-1 поступает от ГРС-10, на ГРП-2,3 от ГРС -19 и ГРС-19А.

Мазутное хозяйство ТоТЭЦ состоит из: эстакады мазутослива, приемной емкостей, перекачивающих насосов, баков для хранения и расхода мазута, подогревателей, фильтров,

паромазутопроводов и предназначается для приема (при транспортировке железнодорожными цистернами), хранения и подачи мазута в главный корпус и к водогрейным котлам.

В 2016 – 2017 г. мазут на Тольяттинскую ТЭЦ не поставлялся.

3.3 Виды топлива, потребляемые котельными

На всех котельных в г.о. Тольятти основным видом топлива является природный газ. Резервное топлива отсутсвует за исключением нижеперечисленных котельных:

Котельная № 2 (ул. Громовой, 43).

Основным видом топлива является природный газ. В качестве резервного топлива используется мазут — M-100. В мазутном хозяйстве имеются три надземных стальных резервуара емкостью по 3000 м^3 .

Котельная № 8 (ул. Энергетиков, 23).

Основным видом топлива является природный газ. В качестве резервного топлива используется мазут — M-100. В мазутном хозяйстве имеются два подземных железобетонных резервуара емкостью по $1000~{\rm M}^3$.

Котельная №6 (Ягодинское лесничество)

Основным видом топлива является природный газ. В качестве резервного топлива используется мазут. В мазутном хозяйстве имеются два резервуара емкостью по 87m^3 и один резервуар 47 m^3 .

В мазутном хозяйстве котельных №№ 2, 8, 6 имеются: три резервуара емкостью по 3000 м³ (котельная № 2), два резервуара емкостью по 1000 м³ (котельная № 8), два резервуара емкостью по 87м^3 и один резервуар - 47 м³ (котельная №6). Учет расхода основного топлива ведется по показаниям приборов учёта расхода газа марки TRZ-G 4000, EK-270 (котельная № 2), TRZ-G 1600, EK-260 (котельная № 8), CT 16M-400 (котельная №6)

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Нормативно-техническая документация по топливоиспользованию филиала «Самарский» ПАО «Т Плюс» «Тольяттинская ТЭЦ».
- 2. Нормативно-техническая документация по топливоиспользованию филиала «Самарский» ПАО «Т Плюс» «ТЭЦ ВАЗа».
- 3. Пояснительная записка к расчету и обоснованию значений нормативов создания запасов топлива по филиалу «Самарский» ПАО «Т Плюс» «Тольяттинская ТЭЦ».
- 4. Пояснительная записка к расчету и обоснованию значений нормативов создания запасов топлива по Филиалу «Самарский» ПАО «Т Плюс» «ТЭЦ ВАЗа».
- 5. Федеральный закон от 27.07.2010 № 190-ФЗ «О теплоснабжении».
- 6. Постановление Правительства Российской Федерации от 22.02.2012 № 154 «О требованиях к схемам теплоснабжения, порядку их разработки и утверждения».
- 7. Постановление Правительства РФ от 08.08.2012 № 808 «Об организации теплоснабжения в Российской Федерации и о внесении изменений в некоторые акты Правительства Российской Федерации» (вместе с «Правилами организации теплоснабжения в Российской Федерации»).
- 8. «Методические рекомендации по разработке схем теплоснабжения». Утверждены приказом Минэнерго России и Минрегиона России от 29.12.2012 № 565/667.
- 9. «Порядок создания и использования тепловыми элетростанциями запасов топлива, в том числе в отопительный сезон». Утвержден приказом Минэнерго РФ от 22.08.2013 № 469.

ПРИЛОЖЕНИЕ 1

Состав работающего оборудования источников Филиал «Самарский» ПАО «Т Плюс» в г. о. Тольятти при покрытии перспективной тепловой нагрузки

ТЭЦ ВАЗа

					·	Период				
			Зимний		П	ереходный			Летний	
На	Наименование		«Т»- отбор, Гкал/ч	пучок в конд-ре, Гкал/ч	«П»-отбор, Гкал/ч	«Т»- отбор, Гкал/ч	пучок в конд-ре, Гкал/ч	«П»-отбор, Гкал/ч	«Т»- отбор, Гкал/ч	пучок в конд-ре, Гкал/ч
				2	019 г.					
	T-100-130		160,0	20,0		160,0	15,0			
	T-100-130		160,0	15,0		160,0	11,0		53,4	
Турбины	T-100-130		160,0			160,0	4,0			
	T-100/120-130-3		175,0			145,7				
	T-100/120-130-3		175,0							
	ПТ-135/165-130/15	5,98	110,0		6,62	110,0		5,20	110,0	
Нагру	Нагрузка ПВК, Гкал/ч		124,3							
Кол-во п	аровых котлов, шт.		7			6			3	
		,			020 г.					
	T-100-130		160,0	15,0		160,0	10,0			
	T-100-130		160,0	15,0		160,0	11,0		52,2	
Турбины	T-100-130		160,0			160,0	4,0			
туройны	T-100/120-130-3		175,0			145,3				
	T-100/120-130-3		175,0							
	ПТ-135/165-130/15	5,98	110,0		6,62	110,0		5,20	110,0	
Нагру	зка ПВК, Гкал/ч		121,6							
Кол-во п	аровых котлов, шт.		7			6			3	
				2	021 г.					
	T-100-130		160,0	15,0		160,0	10,0			
	T-100-130		160,0	9,0		160,0	7,0		51,7	
Турбины	T-100-130		160,0			160,0	4,0			
туройны	T-100/120-130-3		175,0			146,8				
	T-100/120-130-3		175,0							
	ПТ-135/165-130/15	5,98	110,0		6,62	110,0		5,20	110,0	

						Период				
			Зимний		П	ереходный			Летний	
На	именование	«П»-отбор, Гкал/ч	«Т»- отбор, Гкал/ч	пучок в конд-ре, Гкал/ч	«П»-отбор, Гкал/ч	«Т»- отбор, Гкал/ч	пучок в конд-ре, Гкал/ч	«П»-отбор, Гкал/ч	«Т»- отбор, Гкал/ч	пучок в конд-ре, Гкал/ч
Нагру	зка ПВК, Гкал/ч		123,9	•		-	•		-	
Кол-во п	аровых котлов, шт.		7		6				3	
				2	022 г.					
	T-100-130		160,0	10,0		160,0				
	T-100-130		160,0	9,0		160,0			50,4	
Турбины	T-100-130		160,0			160,0				
т уройны	T-100/120-130-3		175,0			162,0				
	T-100/120-130-3		175,0							
	ПТ-135/165-130/15	5,98	110,0		6,62	110,0		5,20	110,0	
1,	Нагрузка ПВК, Гкал/ч		120,6						_	
Кол-во п	Кол-во паровых котлов, шт.		7			6			3	
					023 г.					
	T-100-130		160,0	10,0		160,0				
	T-100-130		160,0	9,0		160,0			50,4	
Турбины	T-100-130		160,0			160,0				
туройны	T-100/120-130-3		175,0			162,0				
	T-100/120-130-3		175,0							
	ПТ-135/165-130/15	5,98	110,0		6,62	110,0		5,20	110,0	
	зка ПВК, Гкал/ч		120,6			-			-	
Кол-во п	аровых котлов, шт.		7			6			3	
					028 г.		1	l l		1
	T-100-130		160,0	10,0		160,0				
	T-100-130		160,0	9,0		160,0			50,4	
Турбины	T-100-130		160,0			160,0				
Туронны	T-100/120-130-3		175,0			162,0				
	T-100/120-130-3		175,0							
	ПТ-135/165-130/15	5,98	110,0		6,62	110,0		5,20	110,0	
	зка ПВК, Гкал/ч		120,6			-			-	
Кол-во п	аровых котлов, шт.		7			6			3	
				2	038 г.					

ЮгЭнергоИнжиниринг

						Период					
		Зимний			Ι	Переходный			Летний		
Наименование		«П»-отбор, Гкал/ч	«Т»- отбор, Гкал/ч	пучок в конд-ре, Гкал/ч	«П»-отбор, Гкал/ч	«Т»- отбор, Гкал/ч	пучок в конд-ре, Гкал/ч	«П»-отбор, Гкал/ч	«Т»- отбор, Гкал/ч	пучок в конд-ре, Гкал/ч	
	T-100-130		160,0	10,0		160,0					
	T-100-130		160,0	9,0		160,0			50,4		
Тутбуууу	T-100-130		160,0			160,0					
Турбины	T-100/120-130-3		175,0			162,0					
	T-100/120-130-3		175,0								
	ПТ-135/165-130/15	5,98	110,0		6,62	110,0		5,20	110,0		
Нагру	зка ПВК, Гкал/ч		120,6			-			-		
Кол-во п	аровых котлов, шт.		7		6			3			

ТоТЭЦ, вариант Б.1

				Пер	иод		
Наиг	менование	Зим	ний	Перех	одный	Лет	ний
		«П»-отбор, Гкал/ч	«Т»-отбор, Гкал/ч		«Т»-отбор, Гкал/ч	«П»-отбор, Гкал/ч	«Т»-отбор, Гкал/ч
				2019 г.			
	ПТ-65-130/13			10,0	30,0		
	ПТ-65-130/13	4,1	60,0	10,0	52,6	2,0	67,0
	P-25-130/13-21						
	P-25-130/13-21	113,0		113,0		113,0	
Турбины	ПТ-80-130/13		100,0				
	P-35-130/4-13						
	T-100-130		116,7		51,7		
	T-100-130						
	P-50-130/15	220,0		202,1		218,4	
Нагрузк	а ПВК, Гкал/ч		-		-		•
Кол-во пар	овых котлов, шт.		4		4	3	}
				2020 г.			
	ПТ-65-130/13			10,0	30,0		
	ПТ-65-130/13	4,1	60,0	10,0	52,6	2,0	66,7
	P-25-130/13-21						
	P-25-130/13-21	113,0		113,0		113,0	
Турбины	ПТ-80-130/13		100,0				
	P-35-130/4-13						
	T-100-130		115,1		51,1		
	T-100-130						
	P-50-130/15	220,0		202,1		218,4	
Нагрузк	а ПВК, Гкал/ч		-		-		-
	овых котлов, шт.		4		4	3	
				2021 г.			
	ПТ-65-130/13			10,0	30,0		
	ПТ-65-130/13	4,1	60,0	10,0	52,6	2,0	66,4
Type	P-25-130/13-21						
Турбины	P-25-130/13-21	113,0		113,0		113,0	
	ПТ-80-130/13		100,0				
	P-35-130/4-13						

				Пер	иод		
Наим	тенование	Зим		Перех	одный	Леті	ний
		«П»-отбор, Гкал/ч	«Т»-отбор, Гкал/ч	«П»-отбор, Гкал/ч	«Т»-отбор, Гкал/ч	«П»-отбор, Гкал/ч	«Т»-отбор, Гкал/ч
	T-100-130		113,5		50,4		
	T-100-130						
	P-50-130/15	220,0		202,1		218,4	
Нагрузка	а ПВК, Гкал/ч	-			-	-	
Кол-во паре	овых котлов, шт.	4	4		4	3	
				2022 г.			
	ПТ-65-130/13			10,0	30,0		
	ПТ-65-130/13	4,1	60,0	10,0	51,9	2,0	66,1
	P-25-130/13-21						
	P-25-130/13-21	113,0		113,0		113,0	
Турбины	ПТ-80-130/13		100,0				
	P-35-130/4-13						
	T-100-130		111,9		50,4		
	T-100-130						
	P-50-130/15	220,0		202,1		218,4	
Нагрузка	а ПВК, Гкал/ч	-	-		-	-	
	овых котлов, шт.	4		4		3	
				2023 г.			
	ПТ-65-130/13			10,0	30,0		
	ПТ-65-130/13	4,1	60,0	10,0	50,0	2,0	65,2
	P-25-130/13-21						
	P-25-130/13-21	113,0		113,0		113,0	
Турбины	ПТ-80-130/13		100,0				
	P-35-130/4-13						
	T-100-130		107,8		50,4		
	T-100-130						
	P-50-130/15	220,0		202,1		218,4	
Нагрузка	а ПВК, Гкал/ч	-	•		-	-	
Кол-во паре	овых котлов, шт.		4		4	3	
				2028 г.			
Турбины	ПТ-65-130/13			10,0	30,0		
туройны	ПТ-65-130/13	4,1	60,0	10,0	50,0	2,0	65,0

ЮгЭнергоИнжиниринг

			Период									
Наи	менование	Зим	ний		одный	Летний						
		«П»-отбор, Гкал/ч	«Т»-отбор, Гкал/ч	«П»-отбор, Гкал/ч	«Т»-отбор, Гкал/ч	«П»-отбор, Гкал/ч	«Т»-отбор, Гкал/ч					
	P-25-130/13-21											
	P-25-130/13-21	113,0		113,0		113,0						
	ПТ-80-130/13		100,0									
	P-35-130/4-13											
	T-100-130		108,6		50,4							
	T-100-130											
	P-50-130/15	220,0		202,1		218,4						
Нагрузк	а ПВК, Гкал/ч	-	•		-	-						
Кол-во пар	овых котлов, шт.	4	4		4	3						
				2038 г.								
	ПТ-65-130/13			10,0	30,0							
	ПТ-65-130/13	4,1	60,0	10,0	50,0	2,0	65,0					
	P-25-130/13-21											
	P-25-130/13-21	113,0		113,0		113,0						
Турбины	ПТ-80-130/13		100,0									
	P-35-130/4-13											
	T-100-130		108,6		50,4							
	T-100-130											
	P-50-130/15	220,0		202,1		218,4						
Нагрузк	а ПВК, Гкал/ч	-	•		-	-						
Кол-во пар	овых котлов, шт.	4	4		4	3						

ПРИЛОЖЕНИЕ 2

Макет расчета показателей источников Филиал «Самарский» ПАО «Т Плюс» в г. о. Тольятти

ТЭЦ ВАЗа

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
	I		2019 г.		П		
Число часов работы	Ч	τ	заполняется	2904	2184	3672	-
Суммарная нагрузка турбин	МВт	$N_{\scriptscriptstyle \mathrm{T}}$	заполняется	736	143	96	-
Выработка электроэнергии	тыс. кВт∙ч	Э	$N\tau \cdot au$	2137386	311224	353243	2 801 293
Отпуск электроэнергии	тыс. кВт∙ч	Эот	$Э$ - $Э_{\kappa}^{ \mathrm{ch}}$ - $Э_{\mathrm{T}}^{ \mathrm{ch}}$ - $Э_{\mathrm{тепл}}$ - $Э_{\mathrm{пар}}$	1977875	139268	265721	2 382 864
Отпуск тепловой энергии	Гкал	Q_{o_T}	$\overline{\mathrm{Q}}_{\mathrm{or}}\cdot au$	4075750	522846	496856	5 095 961
Значение удельного расхода тепла брутто на турбоагрегат	ккал/кВт∙ч	$q_{\scriptscriptstyle \mathrm{T}}^{\mathrm{6p}}$	в расчет	1348	1362	2054	1439
Расход тепла на выработку электроэнергии	Гкал	Qэ	$N_{\scriptscriptstyle T} \cdot q_{\scriptscriptstyle T} \cdot \tau/1000$	2881197	423887	725561	-
Коэффициент стабилизации тепловых процессов	%	Кст	заполняется	0,1	0,1	0,1	-
Доля отпуска тепла, обеспечиваемая за счет нагрева воды в сетевых насосах	%	$lpha_{ m Hac}$	заполняется	2,9	1,9	1,5	-
Значение коэффициента потерь при отпуске тепла внешним потребителям от энергетических котлов	%	$lpha_{\mathrm{not}}{}^{\mathrm{sk}}$	заполняется	1,7	1,2	0,6	-
Коэффициент теплового потока	%	$\eta_{\scriptscriptstyle T\Pi}$	$100\text{-}1,5\!\cdot\!\Sigma Q_{\scriptscriptstyle K}{}^{\text{бр(Hom)}}\!/\!\Sigma Q_{\scriptscriptstyle K}{}^{\text{бр}}$	98,2	98,2	97,6	-
Дополнительные затраты электроэнергии на насосы	тыс. кВт∙ч	Θ_{nap}	заполняется	472	471	456	-

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
XBO для восполнения невозврата конденсата от потребителя							
Выработка тепла брутто котлами	Гкал/ч	$\overline{Q}_{\kappa}^{ 6p}$	заполняется	1759	1570	579	-
Выработка тепла брутто котлами	Гкал	$Q_{\kappa}{}^{6p}$	$\bar{Q}_{\kappa}{}^{6p}\cdot\tau$	5108617	3428418	2127085	-
Затраты электроэнергии на теплофикационную установку	тыс. кВт∙ч	Этепл	заполняется	101132	102395	42242	-
Значение КПД брутто группы пиковых котлов	%	$\eta_{\kappa_{(\Pi B K)}}{}^{6p}$	заполняется	92,4	0	0	-
Значение КПД брутто группы энергетических котлов	%	$\eta_{\kappa(i \kappa)}{}^{6p}$	заполняется	92,5	92,7	92,4	-
значение суммарного расхода тепла на собственные нужды котла	Гкал	Q _k ^{ch}	заполняется	36903	43285	24891	-
значение суммарного расхода тепла на собственные нужды турбины	Гкал	Q _T ^{cH}	заполняется	8450	9605	3649	-
значение суммарного расхода электроэнергии на собственные нужды котла	тыс. кВт∙ч	Эксн	заполняется	182105	30158	44827	-
значение суммарного расхода электроэнергии на собственные нужды турбины	тыс. кВт∙ч	Этсн	заполняется	26717	4793	10915	-
Коэффициент, учитывающий тепло дополнительно внесенное в топку	%	K _Q	заполняется	0,98	0,98	0,98	-
Суммарный расход тепла на собственные нужды котла	%	$q_{\kappa}^{ c_{\rm H}}$	$100 \cdot Q_{\scriptscriptstyle K}{}^{\scriptscriptstyle \mathrm{ch}}/Q_{\scriptscriptstyle K}{}^{\scriptscriptstyle \mathrm{fp}}$	0,7	1,3	1,2	-

ЮгЭнергоИнжиниринг

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
Суммарный расход							
электроэнергии на	%	Эксн%	$100 \cdot 3_{\kappa^{ch}} / 3$	9	10	13	-
собственные нужды котлов							
Суммарный расход тепла							
на собственные нужды	%	$q_{\scriptscriptstyle \mathrm{T}}^{}}$	$Q_{\scriptscriptstyle \mathrm{T}}^{\mathrm{ch}}/(q_{\scriptscriptstyle \mathrm{T}}^{\mathrm{\delta p}}\cdot 3\cdot 10^{-5})$	0,3	2,3	0,5	-
турбин							
Суммарный расход							
электроэнергии на	%	Этсн%	$100 \cdot 9_{\scriptscriptstyle{\mathrm{T}}}{}^{\scriptscriptstyle{\mathrm{CH}}} / 9$	1,3	1,5	3,1	-
собственные нужды турбин							
Удельный расход тепла	ккал/кВт∙ч	$q_{\scriptscriptstyle \mathrm{T}}^{^{\mathrm{H}}}$	$q_{\rm T}^{\rm 6p} \cdot (100 + q_{\rm T}^{\rm ch})/(100 - 3_{\rm ch})$	1369	1415	2130	_
нетто на турбоагрегат	KKU31/KB1 1	9 T	qr (100 qr)/(100 3ch)	1307	1413	2130	
Доля отпуска тепла	%	$\alpha_{\scriptscriptstyle \Pi B K}$	$100 \cdot Q^{\text{\tiny IBK}}_{\text{\tiny OT}}/Q_{\text{\tiny OT}}$	30,1	0,0	0,0	24,1
пиковыми котлами	7.0	Siibk	100 \$ 01/\$01	30,1	0,0	0,0	2 .,1
Исходно-номинальное							
значение удельного	_		5, 5, 10.2				
расхода тепла на	Гкал	Q_{\Im}	$q_{\scriptscriptstyle \mathrm{T}}{}^{\mathrm{6p}}\cdot 3\cdot 10^{-3}$	2881197	423887	725561	-
производство							
электроэнергии							
Нагрев воды в сетевых	Гкал	$Q^{\scriptscriptstyle \Gamma B}{}_{\scriptscriptstyle m Hac}$	$ m Q_{or} \cdot lpha_{ m Hac}/100$	117292	9853	7241	_
насосах		- nac	or -mac - or	11/2/2	, 600	, =	
Коэффициент отнесения							
затрат топлива			$(Q_3 + Q_T^{CH})/(Q_3 + Q_T^{CH} + (Q_{OT} -$				
энергетическими котлами	ед	K_9	$Q^{\text{IB}}_{\text{Hac}}$)· $(100+\alpha_{\text{IIOT}}^{3\text{K}})\cdot 10^{-2}$)	0,4	0,5	0,6	-
на производство			e macy (100 smot) 10)				
электроэнергии							
Удельный расход							
электроэнергии на							
собственные нужды,	%	Э,	$\Theta_{\mathrm{T}}^{\mathrm{ch}\%} + K_{2} \cdot \Theta_{\kappa}^{\mathrm{ch}\%}$	4,8	5,9	10,7	_
отнесенного на	, ,		-13 - K	1,0	2,5		
производство							
электроэнергии			6n (100 en) (100 n) /				
Номинальное значение	%	$\eta_{\kappa(\mathfrak{I})^{H}}$	$\eta_{\kappa(3\kappa)}^{6p} \cdot (100 - q_{\kappa}^{cH}) \cdot (100 - \Im_3)$	90,3	89,2	85,9	-
КПД нетто котлов		((3A)	$(100 \cdot K_Q \cdot (100 - \Theta_T^{cH\%}))$,	,-	
Удельный расход	г у.т./кВт·ч	b_{\circ}	$100 \cdot q_{\rm T}^{\rm H} \cdot (100 + K_{\rm ct}) / \eta_{\rm K(9K)}^{\rm H} \cdot \eta_{\rm TH} \cdot 7$	220,7	230,9	363,3	237,2
условного топлива на			T- (ar) In(an) Im	,	<i>'</i>	ĺ	ĺ

ЮгЭнергоИнжиниринг

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
отпущенную		-					
электроэнергию							
Промежуточный удельный расход условного топлива на тепловую энергию по энергетическим котлам	кг у.т./Гкал	$b^{\pi(\mathfrak{s}\kappa)}{}_{\scriptscriptstyle{\mathrm{T}}}$	$(100+\alpha_{\text{not}}{}^{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	163,9	165,2	171,7	-
Промежуточный удельный расход топлива на тепловую энергию по пиковым котлам	кг у.т./Гкал	b ^{п(нвк)} т	$10^5/\ 7\!\cdot\!\eta_{\kappa(\Pi B \kappa)}{}^{6p}$	154,6	0,0	0,0	-
Увеличение удельного расхода условного топлива вследствие дополнительных затрат электроэнергии	кг у.т./Гкал	$\Delta b_{\scriptscriptstyle T9}$	$ m Э_{ m тепл}\cdot b_{ m s}/Q_{ m or}$	5,5	45,2	30,9	-
Удельный расход условного топлива на отпущенную тепловую энергию	кг у.т./Гкал	b_{r}	$\begin{array}{l} \Delta b_{\mathrm{T}^{3}} + (b^{\pi(\Im K)}_{\mathrm{T}} \cdot (100 \text{-} \alpha_{\Pi B K} \text{-} \\ \alpha_{\mathrm{Hac}}) + b^{\pi(\mathrm{HBK})}_{\mathrm{T}} \cdot \alpha_{\Pi B K}) / 100 \end{array}$	161,9	207,3	200,1	170,2
Расход условного топлива на отпущенную электроэнергию	тыс. т у.т.	Вэ	b _э ·Э _{от} /1000	436,5	32,2	96,5	565,2
Расход условного топлива на отпущенную тепловую энергию	тыс. т у.т.	$B_{\scriptscriptstyle T}$	b _т ·Q _{от} /1000	659,7	108,4	99,4	867,5
Общестанционный расход условного топлива	тыс. т у.т.	В	$\mathrm{B}_{\scriptscriptstyle{9}}\!\!+\!\mathrm{B}_{\scriptscriptstyle{\mathrm{T}}}$	1096,3	140,5	195,9	1432,8
			2020 г.				
Число часов работы	Ч	τ	заполняется	2904	2184	3672	-
Суммарная нагрузка турбин	МВт	$N_{\scriptscriptstyle \mathrm{T}}$	заполняется	737	143	96	-
Выработка электроэнергии	тыс. кВт∙ч	Э	Ντ·τ	2140086	311617	353689	2 804 830
Отпуск электроэнергии	тыс. кВт∙ч	$\Theta_{ m ot}$	$Э$ - $Э_{\kappa}^{cH}$ - $Э_{T}^{cH}$ - $Э_{Tепл}$ - $Э_{пар}$	1980575	139661	266167	2 386 402
Отпуск тепловой энергии	Гкал	Q_{ot}	$\overline{\mathrm{Q}}_{\mathrm{or}}\cdot au$	4080897	523506	497484	5 102 397

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
Значение удельного расхода тепла брутто на турбоагрегат	ккал/кВт∙ч	${q_{\scriptscriptstyle \mathrm{T}}}^{6p}$	в расчет	1348	1362	2054	1439
Расход тепла на выработку электроэнергии	Гкал	Qэ	$N_{\scriptscriptstyle T} \cdot q_{\scriptscriptstyle T} \cdot \tau/1000$	2884835	424422	726477	-
Коэффициент стабилизации тепловых процессов	%	Кст	заполняется	0,1	0,1	0,1	-
Доля отпуска тепла, обеспечиваемая за счет нагрева воды в сетевых насосах	%	$lpha_{ m Hac}$	заполняется	2,9	1,9	1,5	-
Значение коэффициента потерь при отпуске тепла внешним потребителям от энергетических котлов	%	$lpha_{\mathrm{nor}}{}^{\mathrm{sk}}$	заполняется	1,7	1,2	0,7	-
Коэффициент теплового потока	%	$\eta_{\scriptscriptstyle T\Pi}$	$100\text{-}1,5\!\cdot\!\Sigma Q_^{\text{6p(hom)}}\!/\!\Sigma Q_^{\text{6p}}$	98,2	98,2	97,6	-
Дополнительные затраты электроэнергии на насосы XBO для восполнения невозврата конденсата от потребителя	тыс. кВт∙ч	Эпар	заполняется	472	471	456	-
Выработка тепла брутто котлами	Гкал/ч	$\bar{Q}_{\kappa}{}^{6p}$	заполняется	1761	1572	580	-
Выработка тепла брутто котлами	Гкал	$Q_{\kappa}{}^{6p}$	$\overline{Q}_{\kappa}{}^{6p}\cdot \tau$	5115068,664	3432747,688	2129770,9 74	-
Затраты электроэнергии на теплофикационную установку	тыс. кВт∙ч	Этепл	заполняется	101260	102525	42296	-
Значение КПД брутто группы пиковых котлов	%	$\eta_{\kappa(\Pi B K)}{}^{6p}$	заполняется	92,4	0	0	-
Значение КПД брутто группы энергетических котлов	%	${\eta_{\kappa(\varkappa\kappa)}}^{6p}$	заполняется	92,5	92,7	92,4	-

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
значение суммарного расхода тепла на собственные нужды котла	Гкал	Q_{κ}^{ch}	заполняется	36949	43339	24922	-
значение суммарного расхода тепла на собственные нужды турбины	Гкал	$Q_{\scriptscriptstyle \mathrm{T}}^{\mathrm{ch}}$	заполняется	8460	9617	3654	-
значение суммарного расхода электроэнергии на собственные нужды котла	тыс. кВт∙ч	Эксн	заполняется	182335	30196	44883	1
значение суммарного расхода электроэнергии на собственные нужды турбины	тыс. кВт∙ч	Этсн	заполняется	26751	4799	10929	-
Коэффициент, учитывающий тепло дополнительно внесенное в топку	%	K _Q	заполняется	0,98	0,98	0,98	-
Суммарный расход тепла на собственные нужды котла	%	q_{κ}^{ch}	$100 \cdot Q_{\kappa}^{\; \mathrm{ch}} / Q_{\kappa}^{\; \mathrm{fp}}$	0,7	1,3	1,2	-
Суммарный расход электроэнергии на собственные нужды котлов	%	$\mathcal{F}^{\mathrm{ch}}$	$100 \cdot Э_{\scriptscriptstyle K}^{\; { m ch}}/Э$	9	10	13	1
Суммарный расход тепла на собственные нужды турбин	%	$q_{\scriptscriptstyle \mathrm{T}}^{^{\mathrm{CH}}}$	$Q_{\scriptscriptstyle T}{}^{\rm ch}/(q_{\scriptscriptstyle T}{}^{\rm 6p}\!\cdot\!3\!\cdot\!10^{\text{-}5})$	0,3	2,3	0,5	1
Суммарный расход электроэнергии на собственные нужды турбин	%	$3_{\scriptscriptstyle{\mathrm{T}}}^{\scriptscriptstyle{\mathrm{ch}\%}}$	$100 \cdot Э_{\scriptscriptstyle \mathrm{T}}^{\;ch} \! / \! Э$	1,3	1,5	3,1	1
Удельный расход тепла нетто на турбоагрегат	ккал/кВт∙ч	$q_{\scriptscriptstyle \mathrm{T}}^{\scriptscriptstyle \mathrm{H}}$	$q_{\rm T}^{\rm 6p} \cdot (100 + q_{\rm T}^{\rm ch})/(100 - 3_{\rm ch})$	1369	1415	2130	-
Доля отпуска тепла пиковыми котлами	%	$lpha_{\scriptscriptstyle \Pi B K}$	$100 \cdot Q^{\text{IIBK}}_{\text{OT}}/Q_{\text{OT}}$	30,5	0,0	0,0	24,4
Исходно-номинальное значение удельного	Гкал	Qэ	$q_r^{6p} \cdot 3 \cdot 10^{-3}$	2884835	424422	726477	-

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
расхода тепла на							
производство							
электроэнергии							
Нагрев воды в сетевых	Гкал	O LB	0 /100	117500	0070	7260	
насосах	т кал	Q ^{гв} нас	$ m Q_{oT}\cdot lpha_{Hac}/100$	117588	9878	7260	-
Коэффициент отнесения							
затрат топлива			(O + O cH)/(O + O cH + (O				
энергетическими котлами	ед	$K_{\mathfrak{I}}$	$(Q_3+Q_T^{cH})/(Q_3+Q_T^{cH}+(Q_{oT}-Q_{Bac})\cdot(100+\alpha_{\Pi oT}^{sK})\cdot10^{-2})$	0,4	0,5	0,6	-
на производство			Q Hac) (100 + Chor) 10)				
электроэнергии							
Удельный расход							
электроэнергии на							
собственные нужды,	%	$\Theta_{\mathfrak{I}}$	$\mathcal{G}_{\mathtt{T}^{\mathtt{ch}\%}} + \mathcal{K}_{\mathfrak{F}} \cdot \mathcal{G}_{\mathtt{K}^{\mathtt{ch}\%}}$	4,8	5,9	10,7	
отнесенного на	70	J ₉	$\mathcal{J}_{\mathrm{T}} = \mathcal{K}_{\mathfrak{F}} \mathcal{J}_{\mathrm{K}}$	4,0	3,9	10,7	_
производство							
электроэнергии							
Номинальное значение	%	$\eta_{\kappa(i \kappa)}^{\mathrm{H}}$	$\eta_{\kappa(3\kappa)}^{6p} \cdot (100 - q_{\kappa}^{cH}) \cdot (100 - 3_3)$	90,3	89,2	85,9	_
КПД нетто котлов	70	Т(к(эк)	$(100 \cdot K_Q \cdot (100 - 3_T^{cH\%}))$	70,5	07,2	05,7	
Удельный расход							
условного топлива на	г у.т./кВт·ч	b∍	$100 \cdot q_{T}^{H} \cdot (100 + K_{CT}) / \eta_{K(3K)}^{H} \cdot \eta_{TH} \cdot 7$	220,7	230,9	363,3	237,2
отпущенную	1 y.1./KD1 1	0,3	100 q1 (100 · 101)// [k(3k) 1]III /	220,7	230,5	303,3	237,2
электроэнергию							
Промежуточный удельный			()				
расход условного топлива	кг у.т./Гкал	$b^{\pi(\Im \kappa)}_{\mathrm{T}}$	$(100 + \alpha_{\text{пот}}^{^{3}\text{K(H)}}) \cdot (100 + K_{\text{ct}}) \cdot 10^{3} / (\eta_{\text{K(3K)}}^{^{\text{H}}} \cdot \eta_{\text{TII}} \cdot 7$	163,9	165,2	171,7	_
на тепловую энергию по	111 9 11 11 11 11 11)	100,5	100,2	1,1,,	
энергетическим котлам							
Промежуточный удельный							
расход топлива на	кг у.т./Гкал	$b^{\Pi(\mathrm{HBK})}_{\mathrm{T}}$	10 ⁵ / 7· $\eta_{\kappa(\Pi B K)}$ ^б р	154,6	0,0	0,0	_
тепловую энергию по		- 1	- · · · · [K(IDK)	10.,0	,,,	•,•	
пиковым котлам							
Увеличение удельного							
расхода условного топлива	(F)			~ ~	1.50	20.0	
вследствие	кг у.т./Гкал	$\Delta b_{ ext{T} ext{9}}$	$\Theta_{ ext{тепл}} \cdot b_{ ext{-}}/Q_{ ext{от}}$	5,5	45,2	30,9	-
дополнительных затрат							
электроэнергии							

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
Удельный расход условного топлива на отпущенную тепловую энергию	кг у.т./Гкал	b_{r}	$\begin{array}{l} \Delta b_{\mathrm{T}^{3}} + (b^{\Pi(9\mathrm{K})}{}_{\mathrm{T}} \cdot (100 \text{-} \alpha_{\mathrm{\Pi}\mathrm{B}\mathrm{K}} \text{-} \\ \alpha_{\mathrm{Hac}}) + b^{\Pi(\mathrm{HBK})}{}_{\mathrm{T}} \cdot \alpha_{\mathrm{\Pi}\mathrm{B}\mathrm{K}}) / 100 \end{array}$	161,8	207,3	200,1	170,2
Расход условного топлива на отпущенную электроэнергию	тыс. т у.т.	B_{9}	$b_{\scriptscriptstyle 3} \cdot 3_{\scriptscriptstyle OT}/1000$	437,1	32,2	96,7	566,1
Расход условного топлива на отпущенную тепловую энергию	тыс. т у.т.	$\mathrm{B}_{\scriptscriptstyle\mathrm{T}}$	$b_{\scriptscriptstyle T}{\cdot}Q_{\scriptscriptstyle OT}/1000$	660,4	108,5	99,5	868,4
Общестанционный расход условного топлива	тыс. т у.т.	В	$B_9 + B_T$	1097,5	140,8	196,2	1434,5
			2021 г.				
Число часов работы	Ч	τ	заполняется	2904	2184	3672	-
Суммарная нагрузка турбин	МВт	$N_{\scriptscriptstyle \mathrm{T}}$	заполняется	737	143	96	-
Выработка электроэнергии	тыс. кВт·ч	Э	$N au \cdot au$	2140086	311617	353689	2 804 830
Отпуск электроэнергии	тыс. кВт·ч	$\Theta_{ m ot}$	G - G_{K}^{cH} - G_{T}^{cH} - $G_{Te\Pi\Pi}$ - G_{\Piap}	1980575	139661	266167	2 386 402
Отпуск тепловой энергии	Гкал	Q_{ot}	$ar{oldsymbol{Q}}_{ ext{ot}}\cdot au$	4080897	523506	497484	5 102 397
Значение удельного расхода тепла брутто на турбоагрегат	ккал/кВт∙ч	$q_{\scriptscriptstyle \mathrm{T}}^{\mathrm{fop}}$	в расчет	1348	1362	2054	1439
Расход тепла на выработку электроэнергии	Гкал	Qэ	$N_{\scriptscriptstyle T} \cdot q_{\scriptscriptstyle T} \cdot \tau/1000$	2884835	424422	726477	-
Коэффициент стабилизации тепловых процессов	%	Кст	заполняется	0,1	0,1	0,1	-
Доля отпуска тепла, обеспечиваемая за счет нагрева воды в сетевых насосах	%	$lpha_{ m Hac}$	заполняется	2,9	1,9	1,5	-
Значение коэффициента потерь при отпуске тепла внешним потребителям от энергетических котлов	%	$lpha_{\mathrm{not}}{}^{_{\mathrm{3K}}}$	заполняется	1,7	1,2	0,7	-

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
Коэффициент теплового потока	%	$\eta_{\scriptscriptstyle T\Pi}$	$100\text{-}1,5 \cdot \Sigma Q_{\kappa}{}^{\text{6p(hom)}} / \Sigma Q_{\kappa}{}^{\text{6p}}$	98,2	98,2	97,6	-
Дополнительные затраты электроэнергии на насосы XBO для восполнения невозврата конденсата от потребителя	тыс. кВт∙ч	Эпар	заполняется	472	471	456	-
Выработка тепла брутто котлами	Гкал/ч	$\overline{Q}_{\kappa}^{6p}$	заполняется	1761	1572	580	-
Выработка тепла брутто котлами	Гкал	$Q_{\kappa}{}^{6p}$	$\bar{Q}_{\kappa}{}^{6p}\cdot \tau$	5115068,664	3432747,688	2129770,9 74	-
Затраты электроэнергии на теплофикационную установку	тыс. кВт∙ч	$ m Э_{ m тепл}$	заполняется	101260	102525	42296	-
Значение КПД брутто группы пиковых котлов	%	$\eta_{\kappa(\Pi B K)}{}^{\delta p}$	заполняется	92,4	0	0	-
Значение КПД брутто группы энергетических котлов	%	$\eta_{\kappa(\varkappa\kappa)}{}^{6p}$	заполняется	92,5	92,7	92,4	-
значение суммарного расхода тепла на собственные нужды котла	Гкал	Q _k ^{ch}	заполняется	36949	43339	24922	-
значение суммарного расхода тепла на собственные нужды турбины	Гкал	$Q_{\scriptscriptstyle \mathrm{T}}^{\mathrm{ch}}$	заполняется	8460	9617	3654	-
значение суммарного расхода электроэнергии на собственные нужды котла	тыс. кВт∙ч	Эксн	заполняется	182335	30196	44883	-
значение суммарного расхода электроэнергии на собственные нужды турбины	тыс. кВт∙ч	Этсн	заполняется	26751	4799	10929	-
Коэффициент, учитывающий тепло	%	K _Q	заполняется	0,98	0,98	0,98	-

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
дополнительно внесенное в топку							
Суммарный расход тепла на собственные нужды котла	%	$q_{\kappa}^{ m ch}$	$100 \cdot Q_{\kappa}^{\text{ cH}}/Q_{\kappa}^{\text{ fp}}$	0,7	1,3	1,2	-
Суммарный расход электроэнергии на собственные нужды котлов	%	Э _к сн%	$100 \cdot 3_{\kappa}^{\text{ch}} / 3$	9	10	13	ı
Суммарный расход тепла на собственные нужды турбин	%	$q_{\scriptscriptstyle \mathrm{T}}^{}}$	$Q_{\scriptscriptstyle T}{}^{\scriptscriptstyle \mathrm{CH}}\!/\!(q_{\scriptscriptstyle T}{}^{\scriptscriptstyle 6p}\!\cdot\! 3\!\cdot\! 10^{\text{-}5})$	0,3	2,3	0,5	1
Суммарный расход электроэнергии на собственные нужды турбин	%	Этсн%	100∙Э _т сн/Э	1,3	1,5	3,1	-
Удельный расход тепла нетто на турбоагрегат	ккал/кВт·ч	$q_{\scriptscriptstyle \mathrm{T}}{}^{\scriptscriptstyle \mathrm{H}}$	$q_{\scriptscriptstyle T}{}^{\rm fp} \cdot (100 + q_{\scriptscriptstyle T}{}^{\rm ch}) / (100 - \Im_{\rm ch})$	1369	1415	2130	1
Доля отпуска тепла пиковыми котлами	%	$lpha_{\scriptscriptstyle \Pi B K}$	$100{\cdot}Q^{{\scriptscriptstyle \Pi}{\scriptscriptstyle B}{\scriptscriptstyle K}}{}_{{\scriptscriptstyle O}{\scriptscriptstyle T}}\!/Q_{{\scriptscriptstyle O}{\scriptscriptstyle T}}$	31,0	0,0	0,0	24,8
Исходно-номинальное значение удельного расхода тепла на производство электроэнергии	Гкал	Q ₃	$q_{\scriptscriptstyle T}{}^{6p}\cdot \mathcal{G}\cdot 10^{-3}$	2884835	424422	726477	ŀ
Нагрев воды в сетевых насосах	Гкал	Q ^{гв} нас	$Q_{o\tau} \cdot \alpha_{\text{Hac}} / 100$	117588	9878	7260	-
Коэффициент отнесения затрат топлива энергетическими котлами на производство электроэнергии	ед	К,	$(Q_{9}+Q_{T}^{cH})/(Q_{9}+Q_{T}^{cH}+(Q_{0T}-Q_{Hac})\cdot(100+\alpha_{\Pi OT}^{9K})\cdot10^{-2})$	0,4	0,5	0,6	-
Удельный расход электроэнергии на собственные нужды, отнесенного на производство электроэнергии	%	Э,	$3_{T^{cH}\%}+K_{3\cdot 3_{K}^{cH}\%}$	4,8	5,9	10,7	-

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
Номинальное значение КПД нетто котлов	%	$\eta_{\kappa(\nu\kappa)}^{H}$	$\eta_{\kappa(3\kappa)}^{6p} \cdot (100 - q_{\kappa}^{cH}) \cdot (100 - \Im_{3}) / (100 \cdot K_{Q} \cdot (100 - \Im_{\tau}^{cH\%}))$	90,3	89,2	85,9	-
Удельный расход условного топлива на отпущенную электроэнергию	г у.т./кВт·ч	b_{ϑ}	$100 \cdot q_{\scriptscriptstyle T}{}^{\scriptscriptstyle H} \cdot (100 + K_{\scriptscriptstyle CT}) / \eta_{\scriptscriptstyle K(9K)}{}^{\scriptscriptstyle H} \cdot \eta_{\scriptscriptstyle T\Pi} \cdot 7$	220,7	230,9	363,3	237,2
Промежуточный удельный расход условного топлива на тепловую энергию по энергетическим котлам	кг у.т./Гкал	$b^{\pi(\mathfrak{s}\kappa)}{}_{\scriptscriptstyle{\mathrm{T}}}$	$(100 + \alpha_{\text{пот}}^{\text{эк(H)}}) \cdot (100 + K_{\text{ст}}) \cdot 10^3 / (\eta_{\text{к(эк)}}^{\text{H}} \cdot \eta_{\text{тп}} \cdot 7)$	163,9	165,2	171,7	-
Промежуточный удельный расход топлива на тепловую энергию по пиковым котлам	кг у.т./Гкал	b _{п(нвк)} _т	10 ⁵ / 7·η _{κ(πβκ)} ^{6p}	154,6	0,0	0,0	-
Увеличение удельного расхода условного топлива вследствие дополнительных затрат электроэнергии	кг у.т./Гкал	Δb_{r_9}	Этепл в у Qот	5,5	45,2	30,9	-
Удельный расход условного топлива на отпущенную тепловую энергию	кг у.т./Гкал	b_{r}	$\begin{array}{l} \Delta b_{\mathrm{T}^{3}} + (b^{\pi(^{3}\mathrm{K})}{}_{\mathrm{T}} \cdot (100 \text{-} \alpha_{\mathrm{\Pi}\mathrm{K}}\text{-} \\ \alpha_{\mathrm{Hac}}) + b^{\pi(^{\mathrm{H}\mathrm{K}\mathrm{K}})}{}_{\mathrm{T}} \cdot \alpha_{\mathrm{\Pi}\mathrm{B}\mathrm{K}}) / 100 \end{array}$	161,8	207,3	200,1	170,2
Расход условного топлива на отпущенную электроэнергию	тыс. т у.т.	B_{9}	b _э ·Э _{от} /1000	437,1	32,2	96,7	566,1
Расход условного топлива на отпущенную тепловую энергию	тыс. т у.т.	$B_{\scriptscriptstyle T}$	$b_{\mathrm{T}} \cdot Q_{\mathrm{or}} / 1000$	660,2	108,5	99,5	868,3
Общестанционный расход условного топлива	тыс. т у.т.	В	B_9 + B_T	1097,4	140,8	196,2	1434,4
	T	Γ	2022 г.				
Число часов работы	Ч	τ	заполняется	2904	2184	3672	-
Суммарная нагрузка турбин	МВт	$N_{\scriptscriptstyle \mathrm{T}}$	заполняется	737	143	96	-

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
Выработка электроэнергии	тыс. кВт∙ч	Э	Ντ·τ	2140187	311631	353706	2 804 963
Отпуск электроэнергии	тыс. кВт∙ч	Эот	$Э$ - $Э_{\kappa}^{ch}$ - $Э_{\tau}^{ch}$ - $Э_{тепл}$ - $Э_{пар}$	1980676	139676	266184	2 386 535
Отпуск тепловой энергии	Гкал	Оот	$\overline{\overline{Q}}_{ ext{ot}}\cdot au$	4081090	523531	497507	5 102 638
Значение удельного расхода тепла брутто на турбоагрегат	ккал/кВт∙ч	$q_{\scriptscriptstyle \rm T}{}^{\rm 6p}$	в расчет	1348	1362	2054	1439
Расход тепла на выработку электроэнергии	Гкал	ę	$N_{\scriptscriptstyle T} \cdot q_{\scriptscriptstyle T} \cdot \tau/1000$	2884972	424442	726512	-
Коэффициент стабилизации тепловых процессов	%	Кст	заполняется	0,1	0,1	0,1	-
Доля отпуска тепла, обеспечиваемая за счет нагрева воды в сетевых насосах	%	$lpha_{ m Hac}$	заполняется	2,9	1,9	1,5	-
Значение коэффициента потерь при отпуске тепла внешним потребителям от энергетических котлов	%	$lpha_{\mathrm{nor}}{}^{\mathrm{3K}}$	заполняется	1,7	1,2	0,7	-
Коэффициент теплового потока	%	$\eta_{\scriptscriptstyle T\Pi}$	$100\text{-}1,5\cdot\Sigma Q_{\kappa}^{$	98,2	98,2	97,6	-
Дополнительные затраты электроэнергии на насосы XBO для восполнения невозврата конденсата от потребителя	тыс. кВт∙ч	Эпар	заполняется	472	471	456	-
Выработка тепла брутто котлами	Гкал/ч	$\overline{Q}_{\kappa}{}^{6p}$	заполняется	1761	1572	580	-
Выработка тепла брутто котлами	Гкал	$Q_{\kappa}{}^{6p}$	$\overline{Q}_{\kappa^{6p}} \cdot au$	5115310,463	3432909,96	2129871,6 52	-
Затраты электроэнергии на теплофикационную установку	тыс. кВт∙ч	Этепл	заполняется	101265	102530	42298	-
Значение КПД брутто группы пиковых котлов	%	$\eta_{\kappa_{(\Pi BK)}}{}^{6p}$	заполняется	92,4	0	0	-

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
Значение КПД брутто группы энергетических котлов	%	$\eta_{\kappa(\ni\kappa)}{}^{6p}$	заполняется	92,5	92,7	92,4	-
значение суммарного расхода тепла на собственные нужды котла	Гкал	Q _k ^{ch}	заполняется	36951	43341	24924	-
значение суммарного расхода тепла на собственные нужды турбины	Гкал	$Q_{\mathrm{T}}^{\mathrm{ch}}$	заполняется	8461	9618	3654	1
значение суммарного расхода электроэнергии на собственные нужды котла	тыс. кВт∙ч	Э $_{\kappa}^{ m ch}$	заполняется	182344	30197	44885	-
значение суммарного расхода электроэнергии на собственные нужды турбины	тыс. кВт∙ч	Этсн	заполняется	26752	4799	10930	-
Коэффициент, учитывающий тепло дополнительно внесенное в топку	%	K_{Q}	заполняется	0,98	0,98	0,98	-
Суммарный расход тепла на собственные нужды котла	%	q_{κ}^{ch}	$100 \cdot Q_{\kappa}^{\mathrm{ch}}/Q_{\kappa}^{\mathrm{fp}}$	0,7	1,3	1,2	-
Суммарный расход электроэнергии на собственные нужды котлов	%	Э _к сн%	100·Э _к сн/Э	9	10	13	-
Суммарный расход тепла на собственные нужды турбин	%	$q_{\scriptscriptstyle \mathrm{T}}{}^{\mathrm{ch}}$	$Q_{\scriptscriptstyle T}{}^{\scriptscriptstyle \mathrm{cH}}/(q_{\scriptscriptstyle T}{}^{\scriptscriptstyle \mathrm{6p}}\!\cdot\! 3\!\cdot\! 10^{\scriptscriptstyle -5})$	0,3	2,3	0,5	-
Суммарный расход электроэнергии на собственные нужды турбин	%	Этсн%	$100 \cdot 3_{\mathrm{T}}^{\mathrm{ch}} / 3$	1,3	1,5	3,1	-
Удельный расход тепла нетто на турбоагрегат	ккал/кВт∙ч	$q_{\scriptscriptstyle \mathrm{T}}{}^{\scriptscriptstyle \mathrm{H}}$	$q_{_{\rm T}}{}^{\rm 6p} \cdot (100 + q_{_{\rm T}}{}^{\rm ch}) / (100 - \Im_{\rm ch})$	1369	1415	2130	-

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
Доля отпуска тепла пиковыми котлами	%	$lpha_{\scriptscriptstyle \Pi B K}$	$100 \cdot Q^{\text{\tiny IBK}}{}_{\text{\tiny OT}}/Q_{\text{\tiny OT}}$	31,3	0,0	0,0	25,1
Исходно-номинальное значение удельного расхода тепла на производство электроэнергии	Гкал	Q ₃	$q_{\scriptscriptstyle T}{}^{6p}\cdot 3\cdot 10^{-3}$	2884972	424442	726512	-
Нагрев воды в сетевых насосах	Гкал	Q ^{гв} нас	Q _{or} ·α _{hac} /100	117599	9879	7260	-
Коэффициент отнесения затрат топлива энергетическими котлами на производство электроэнергии	ед	К,	$(Q_9 + Q_T^{cH})/(Q_9 + Q_T^{cH} + (Q_{oT} - Q_{Bac}) \cdot (100 + \alpha_{\Pi OT}^{9K}) \cdot 10^{-2})$	0,4	0,5	0,6	-
Удельный расход электроэнергии на собственные нужды, отнесенного на производство электроэнергии	%	Э,	$\mathfrak{I}_{r}^{ch\%} + K_{\mathfrak{I}} \cdot \mathfrak{I}_{\kappa}^{ch\%}$	4,8	5,9	10,7	-
Номинальное значение КПД нетто котлов	%	$\eta_{{\scriptscriptstyle K}({\scriptscriptstyle 3K})}{^{\scriptscriptstyle H}}$	$\eta_{\kappa(9\kappa)}^{6p} \cdot (100 - q_{\kappa}^{cH}) \cdot (100 - \Im_{3}) / (100 \cdot K_{Q} \cdot (100 - \Im_{\tau}^{cH\%}))$	90,3	89,2	85,9	-
Удельный расход условного топлива на отпущенную электроэнергию	г у.т./кВт·ч	b_3	$100 \cdot q_{\scriptscriptstyle T}{}^{\scriptscriptstyle H} \cdot (100 + K_{\scriptscriptstyle CT}) / \eta_{\scriptscriptstyle K(\Im K)}{}^{\scriptscriptstyle H} \cdot \eta_{\scriptscriptstyle T\Pi} \cdot 7$	220,7	230,9	363,3	237,2
Промежуточный удельный расход условного топлива на тепловую энергию по энергетическим котлам	кг у.т./Гкал	$b^{\pi(\imath\kappa)}$ _T	$(100 + \alpha_{\text{пот}}^{\text{эк(H)}}) \cdot (100 + K_{\text{ст}}) \cdot 10^{3} / (\eta_{\text{к(эк)}}^{\text{H}} \cdot \eta_{\text{тп}} \cdot 7$	163,9	165,2	171,7	-
Промежуточный удельный расход топлива на тепловую энергию по пиковым котлам	кг у.т./Гкал	b ^{п(нвк)} т	$10^5/\ 7 \cdot \eta_{\kappa(\Pi B \kappa)}{}^{6p}$	154,6	0,0	0,0	-
Увеличение удельного расхода условного топлива	кг у.т./Гкал	$\Delta b_{ ext{ iny T9}}$	$Э_{ m тепл} \cdot b_{ m 3}/Q_{ m or}$	5,5	45,2	30,9	-

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
вследствие							
дополнительных затрат							
электроэнергии							
Удельный расход							
условного топлива на	кг у.т./Гкал	$\mathbf{b}_{\scriptscriptstyle\mathrm{T}}$	$\Delta b_{\mathrm{T9}} + (b^{\mathrm{\Pi(9K)}}_{\mathrm{T}} \cdot (100 - \alpha_{\mathrm{\PiBK}} -$	161,8	207,3	200,1	170,1
отпущенную тепловую	111 3 11 11 11 11 11 11 11 11 11 11 11 1		$\alpha_{\text{\tiny Hac}}) + b^{\pi({}_{\text{\tiny HBK}})}{}_{\scriptscriptstyle T} \cdot \alpha_{\pi_{\text{\tiny BK}}}) / 100$	101,0	207,5	200,1	1,0,1
энергию							
Расход условного топлива		_					
на отпущенную	тыс. т у.т.	$B_{\mathfrak{d}}$	$b_3 \cdot \Theta_{\mathrm{or}} / 1000$	437,2	32,3	96,7	566,1
электроэнергию							
Расход условного топлива		_			100 7	00 -	0.50.2
на отпущенную тепловую	тыс. т у.т.	$B_{\scriptscriptstyle T}$	$b_{\mathrm{T}} \cdot Q_{\mathrm{OT}} / 1000$	660,1	108,5	99,5	868,2
энергию							
Общестанционный расход	тыс. т у.т.	В	$\mathrm{B}_{\scriptscriptstyle{9}}\!\!+\!\!\mathrm{B}_{\scriptscriptstyle{\mathrm{T}}}$	1097,3	140,8	196,2	1434,3
условного топлива	J			,-		,	
	T	T	2023 г.		T		ī
Число часов работы	Ч	τ	заполняется	2904	2184	3672	-
Суммарная нагрузка турбин	МВт	N _T	заполняется	739	143	97	-
Выработка электроэнергии	тыс. кВт∙ч	Э	Nτ·τ	2147077	312635	354845	2813993
Отпуск электроэнергии	тыс. кВт∙ч	Эот	$Э$ - $Э_{\kappa}^{ \mathrm{ch}}$ - $Э_{\mathrm{T}}^{ \mathrm{ch}}$ - $Э_{\mathrm{Tenn}}$ - $Э_{\mathrm{пар}}$	1987566	140679	267322	2395567
Отпуск тепловой энергии	Гкал	Q _{oT}	$\overline{\mathrm{Q}}_{\mathrm{o}_{\mathrm{T}}}\cdot au$	4094229	525216	499109	5119066
Значение удельного расхода тепла брутто на турбоагрегат	ккал/кВт∙ч	${q_{\scriptscriptstyle \mathrm{T}}}^{\mathrm{fp}}$	в расчет	1348	1362	2054	1439
Расход тепла на выработку электроэнергии	Гкал	Qэ	$N_{\scriptscriptstyle T} \cdot q_{\scriptscriptstyle T} \cdot \tau/1000$	2894260	425808	728851	-
Коэффициент стабилизации тепловых процессов	%	Кст	заполняется	0,1	0,1	0,1	-
Доля отпуска тепла, обеспечиваемая за счет нагрева воды в сетевых насосах	%	αнас	заполняется	2,9	1,9	1,5	-

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
Значение коэффициента потерь при отпуске тепла внешним потребителям от энергетических котлов	%	$lpha_{ ext{not}}^{-3K}$	заполняется	1,7	1,2	0,7	-
Коэффициент теплового потока	%	$\eta_{\scriptscriptstyle T\Pi}$	$100\text{-}1,5\!\cdot\!\Sigma Q_\kappa^{6p(\text{hom})}\!/\!\Sigma Q_\kappa^{6p}$	98,2	98,2	97,6	-
Дополнительные затраты электроэнергии на насосы XBO для восполнения невозврата конденсата от потребителя	тыс. кВт∙ч	Эпар	заполняется	474	473	458	-
Выработка тепла брутто котлами	Гкал/ч	$\bar{Q}_{\kappa}{}^{6p}$	заполняется	1767	1577	582	-
Выработка тепла брутто котлами	Гкал	$Q_{\kappa}{}^{6p}$	$\bar{Q}_{\kappa}{}^{6p}\cdot \tau$	5131778,761	3443961,916	2136728,5 89	-
Затраты электроэнергии на теплофикационную установку	тыс. кВт∙ч	Этепл	заполняется	101591	102860	42434	-
Значение КПД брутто группы пиковых котлов	%	$\eta_{\kappa(\Pi B K)}{}^{6p}$	заполняется	92,4	0	0	-
Значение КПД брутто группы энергетических котлов	%	$\eta_{\kappa(3\kappa)}{}^{6p}$	заполняется	92,5	92,7	92,4	-
значение суммарного расхода тепла на собственные нужды котла	Гкал	$Q_{\kappa}^{ ch}$	заполняется	37070	43481	25004	-
значение суммарного расхода тепла на собственные нужды турбины	Гкал	Q _T ^{ch}	заполняется	8488	9649	3666	-
значение суммарного расхода электроэнергии на собственные нужды котла	тыс. кВт∙ч	Эксн	заполняется	182931	30294	45030	-
значение суммарного расхода электроэнергии на	тыс. кВт∙ч	Этсн	заполняется	26838	4815	10965	-

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
собственные нужды турбины							
Коэффициент, учитывающий тепло дополнительно внесенное в топку	%	K _Q	заполняется	0,98	0,98	0,98	-
Суммарный расход тепла на собственные нужды котла	%	$q_{\kappa}^{{}^{\mathrm{CH}}}$	$100 \cdot Q_{\scriptscriptstyle K}{}^{\rm ch}/Q_{\scriptscriptstyle K}{}^{\rm 6p}$	0,7	1,3	1,2	-
Суммарный расход электроэнергии на собственные нужды котлов	%	$\mathfrak{Z}_{\kappa}^{\mathtt{ch}\%}$	$100 \cdot Э_{\kappa}^{\text{ ch}}/Э$	9	10	13	-
Суммарный расход тепла на собственные нужды турбин	%	$q_{\scriptscriptstyle \mathrm{T}}^{_{\mathrm{CH}}}$	$Q_{\scriptscriptstyle T}^{\; {\rm cH}/\!}(q_{\scriptscriptstyle T}^{\; 6p}\!\cdot\! 3\!\cdot\! 10^{\text{-}5})$	0,3	2,3	0,5	-
Суммарный расход электроэнергии на собственные нужды турбин	%	Э _т ен%	100·Э _т сн/Э	1,3	1,5	3,1	-
Удельный расход тепла нетто на турбоагрегат	ккал/кВт·ч	q _т ^н	$q_{\rm r}^{\rm 6p} \cdot (100 + q_{\rm r}^{\rm ch})/(100 - 3_{\rm ch})$	1369	1415	2130	-
Доля отпуска тепла пиковыми котлами	%	αпвк	$100\!\cdot\! Q^{\text{\tiny IIBK}}{}_{\text{\tiny OT}}\!/Q_{\text{\tiny OT}}$	31,6	0,0	0,0	25,2
Исходно-номинальное значение удельного расхода тепла на производство электроэнергии	Гкал	Q ₃	$q_{\scriptscriptstyle T}^{\ 6p}\cdot 3\cdot 10^{-3}$	2894260	425808	728851	-
Нагрев воды в сетевых насосах	Гкал	Q ^{гв} нас	$Q_{or}{\cdot}\alpha_{\text{\rm Hac}}/100$	118358	9943	7307	-
Коэффициент отнесения затрат топлива энергетическими котлами на производство электроэнергии	ед	К,	$(Q_{9}+Q_{T}^{cH})/(Q_{9}+Q_{T}^{cH}+(Q_{oT}-Q_{Bac})\cdot(100+\alpha_{HOT}^{9K})\cdot10^{-2})$	0,4	0,5	0,6	-
Удельный расход электроэнергии на	%	Э,	$G^{cH}_{L} + K^{G} \cdot G^{K}_{CH} $	4,8	5,9	10,7	-

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
собственные нужды,	B				<u> </u>		
отнесенного на							
производство							
электроэнергии							
Номинальное значение КПД нетто котлов	%	$\eta_{\kappa(\ni\kappa)^H}$	$\eta_{\kappa(3\kappa)}^{6p} \cdot (100 - q_{\kappa}^{cH}) \cdot (100 - \beta_{3}) / (100 \cdot K_{Q} \cdot (100 - \beta_{T}^{cH\%}))$	90,3	89,2	85,9	-
Удельный расход условного топлива на отпущенную электроэнергию	г у.т./кВт·ч	b_9	$100 \cdot q_{\scriptscriptstyle T}{}^{\scriptscriptstyle H} \cdot (100 + K_{\scriptscriptstyle CT}) / \eta_{\scriptscriptstyle K(9K)}{}^{\scriptscriptstyle H} \cdot \eta_{\scriptscriptstyle TII} \cdot 7$	220,7	230,9	363,3	237,2
Промежуточный удельный расход условного топлива на тепловую энергию по энергетическим котлам	кг у.т./Гкал	$b^{\pi(\mathfrak{s}\kappa)}{}_{\scriptscriptstyle{\mathrm{T}}}$	$(100+\alpha_{\text{not}}{}^{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	163,9	165,2	171,7	-
Промежуточный удельный расход топлива на тепловую энергию по пиковым котлам	кг у.т./Гкал	$b^{\pi({\scriptscriptstyle HBK})}{}_{\scriptscriptstyle m T}$	$10^5/\ 7 \cdot \eta_{\mathrm{K}(\mathrm{\Pi BK})}{}^{\mathrm{6p}}$	154,6	0,0	0,0	-
Увеличение удельного расхода условного топлива вследствие дополнительных затрат электроэнергии	кг у.т./Гкал	$\Delta b_{\scriptscriptstyle \mathrm{T9}}$		5,5	45,2	30,9	-
Удельный расход условного топлива на отпущенную тепловую энергию	кг у.т./Гкал	$b_{\rm r}$	$\begin{array}{l} \Delta b_{\mathrm{T}^{3}} + (b^{\mathrm{\Pi}(\mathrm{9K})}{}_{\mathrm{T}} \cdot (100 - \alpha_{\mathrm{\PiBK}} - \alpha_{\mathrm{Hac}}) + b^{\mathrm{\Pi}(\mathrm{HBK})}{}_{\mathrm{T}} \cdot \alpha_{\mathrm{\PiBK}}) / 100 \end{array}$	161,7	207,3	200,1	170,1
Расход условного топлива на отпущенную электроэнергию	тыс. т у.т.	$B_{\mathfrak{I}}$	b _э ·Э _{от} /1000	438,7	32,5	97,1	568,3
Расход условного топлива на отпущенную тепловую энергию	тыс. т у.т.	$B_{\scriptscriptstyle \mathrm{T}}$	b _т ·Q _{от} /1000	662,1	108,9	99,8	870,8
Общестанционный расход условного топлива	тыс. т у.т.	В	B_9 + B_T	1100,8	141,4	197,0	1439,1
			2028 г.				

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
Число часов работы	Ч	τ	заполняется	2904	2184	3672	-
Суммарная нагрузка турбин	МВт	N _T	заполняется	760	147	99	-
Выработка электроэнергии	тыс. кВт∙ч	Э	$N_{ extsf{T}} \cdot au$	2207169	321385	364776	2892751
Отпуск электроэнергии	тыс. кВт·ч	Θ_{or}	$Э$ - $Э_{\kappa}^{ \mathrm{ch}}$ - $Э_{\mathrm{T}}^{ \mathrm{ch}}$ - $Э_{\mathrm{тепл}}$ - $Э_{\mathrm{пар}}$	2047658	149429	277254	2474340
Отпуск тепловой энергии	Гкал	Q_{ot}	$\overline{\mathrm{Q}}_{\mathrm{or}}\cdot au$	4208817	539916	513078	5262337
Значение удельного расхода тепла брутто на турбоагрегат	ккал/кВт∙ч	${q_{\scriptscriptstyle \rm T}}^{\rm 6p}$	в расчет	1348	1362	2054	1439
Расход тепла на выработку электроэнергии	Гкал	Qэ	$N_{\scriptscriptstyle T} \cdot q_{\scriptscriptstyle T} \cdot \tau/1000$	2975263	437726	749250	-
Коэффициент стабилизации тепловых процессов	%	Кст	заполняется	0,1	0,1	0,1	-
Доля отпуска тепла, обеспечиваемая за счет нагрева воды в сетевых насосах	%	$lpha_{ m Hac}$	заполняется	3,0	1,9	1,5	-
Значение коэффициента потерь при отпуске тепла внешним потребителям от энергетических котлов	%	$lpha_{\mathrm{nor}}{}^{\mathrm{sk}}$	заполняется	1,7	1,2	0,7	-
Коэффициент теплового потока	%	$\eta_{\scriptscriptstyle TII}$	$100\text{-}1,5\!\cdot\!\Sigma Q_{\scriptscriptstyle K}{}^{\text{бp(hom)}}\!/\!\Sigma Q_{\scriptscriptstyle K}{}^{\text{бp}}$	98,2	98,2	97,6	-
Дополнительные затраты электроэнергии на насосы XBO для восполнения невозврата конденсата от потребителя	тыс. кВт∙ч	Эпар	заполняется	487	486	471	-
Выработка тепла брутто котлами	Гкал/ч	$\overline{Q}_{\kappa}{}^{6p}$	заполняется	1817	1621	598	-
Выработка тепла брутто котлами	Гкал	$Q_{\kappa}{}^{6p}$	$\overline{Q}_{\kappa}{}^{6p}\cdot au$	5275405,573	3540350,575	2196530, 76	-

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
Затраты электроэнергии на теплофикационную установку	тыс. кВт·ч	Этепл	заполняется	104434	105738	43621	-
Значение КПД брутто группы пиковых котлов	%	$\eta_{\kappa(\Pi BK)}{}^{6p}$	заполняется	92,4	0	0	-
Значение КПД брутто группы энергетических котлов	%	$\eta_{\kappa(\ni\kappa)}{}^{6p}$	заполняется	92,5	92,7	92,4	-
значение суммарного расхода тепла на собственные нужды котла	Гкал	Q _k ^{ch}	заполняется	38107	44698	25704	-
значение суммарного расхода тепла на собственные нужды турбины	Гкал	$Q_{\scriptscriptstyle \mathrm{T}}^{\mathrm{ch}}$	заполняется	8725	9919	3768	-
значение суммарного расхода электроэнергии на собственные нужды котла	тыс. кВт·ч	Эксн	заполняется	188051	31142	46290	-
значение суммарного расхода электроэнергии на собственные нужды турбины	тыс. кВт∙ч	Этсн	заполняется	27590	4949	11272	-
Коэффициент, учитывающий тепло дополнительно внесенное в топку	%	K _Q	заполняется	0,98	0,98	0,98	-
Суммарный расход тепла на собственные нужды котла	%	${q_{\kappa}}^{\mathrm{ch}}$	$100 \cdot Q_{\kappa}^{\mathrm{ch}}/Q_{\kappa}^{\mathrm{fp}}$	0,7	1,3	1,2	-
Суммарный расход электроэнергии на собственные нужды котлов	%	Э _к сн%	100∙Э _к сн/Э	9	10	13	-
Суммарный расход тепла на собственные нужды турбин	%	$q_{\scriptscriptstyle T}{}^{\rm ch}$	$Q_{\mathrm{r}^{\mathrm{cH}}}/(q_{\mathrm{r}}^{\mathrm{fip}}\cdot 3\cdot 10^{-5})$	0,3	2,3	0,5	-

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
Суммарный расход электроэнергии на	%	Э _т сн%	100·Э _г ^{сн} /Э	1,3	1,5	3,1	-
собственные нужды турбин							
Удельный расход тепла нетто на турбоагрегат	ккал/кВт∙ч	$q_{\scriptscriptstyle \mathrm{T}}^{^{_{\mathrm{H}}}}$	$q_{\rm T}^{\rm 6p} \cdot (100 + q_{\rm T}^{\rm ch})/(100 - \Im_{\rm ch})$	1369	1415	2130	-
Доля отпуска тепла пиковыми котлами	%	$lpha_{\scriptscriptstyle \Pi B K}$	$100 \cdot Q^{\text{IIBK}}_{\text{OT}}/Q_{\text{OT}}$	33,4	0,0	0,0	26,7
Исходно-номинальное значение удельного расхода тепла на производство электроэнергии	Гкал	Q ₃	q _т ^{бр} ·Э·10 ⁻³	2975263	437726	749250	-
Нагрев воды в сетевых насосах	Гкал	Q ^{гв} нас	$Q_{ m or} \cdot lpha_{ m Hac}/100$	125075	10507	7722	-
Коэффициент отнесения затрат топлива энергетическими котлами на производство электроэнергии	ед	К,	$(Q_{9}+Q_{T}^{cH})/(Q_{9}+Q_{T}^{cH}+(Q_{OT}-Q_{Hac})\cdot(100+\alpha_{\Pi OT}^{gK})\cdot10^{-2})$	0,4	0,5	0,6	-
Удельный расход электроэнергии на собственные нужды, отнесенного на производство электроэнергии	%	Э,	$eta_{\scriptscriptstyle \mathrm{T}}^{ch\%}\!\!+\!\! K_{\!\scriptscriptstyle 3}\!\cdot\! eta_{\scriptscriptstyle \mathrm{K}}^{ch\%}$	4,8	5,9	10,7	-
Номинальное значение КПД нетто котлов	%	$\eta_{\kappa(\ni\kappa)^H}$	$\eta_{\text{K}(3\text{K})}^{\text{fp}} \cdot (100 \text{-} q_{\text{K}}^{\text{cH}}) \cdot (100 \text{-} 3_{3}) / (100 \cdot \text{K}_{Q} \cdot (100 \text{-} 3_{T}^{\text{cH}}))$	90,3	89,2	85,9	-
Удельный расход условного топлива на отпущенную электроэнергию	г у.т./кВт·ч	b_3	$100 \cdot q_{\scriptscriptstyle T}{}^{\scriptscriptstyle H} \cdot (100 + K_{\scriptscriptstyle CT})/\eta_{\scriptscriptstyle K(3K)}{}^{\scriptscriptstyle H} \cdot \eta_{\scriptscriptstyle T\Pi} \cdot 7$	220,7	230,9	363,3	237,3
Промежуточный удельный расход условного топлива на тепловую энергию по энергетическим котлам	кг у.т./Гкал	$b^{\pi(\Im \kappa)}{}_{{}_{\mathrm{T}}}$	$(100 + \alpha_{\text{пот}}{}^{\text{эк(H)}}) \cdot (100 + K_{\text{ст}}) \cdot 10^{3} / (\eta_{\text{к(эк)}}{}^{\text{H}} \cdot \eta_{\text{тп}} \cdot 7$	164,0	165,3	171,7	-

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
Промежуточный удельный расход топлива на тепловую энергию по пиковым котлам	кг у.т./Гкал	bп(нвк) _т	$10^5/\ 7\!\cdot\!\eta_{\kappa(\pi B\kappa)}{}^{6p}$	154,6	0,0	0,0	-
Увеличение удельного расхода условного топлива вследствие дополнительных затрат электроэнергии	кг у.т./Гкал	$\Delta b_{\scriptscriptstyle \mathrm{T9}}$	$ eal_{ m тепл} \cdot b_{ m s}/Q_{ m or}$	5,5	45,2	30,9	-
Удельный расход условного топлива на отпущенную тепловую энергию	кг у.т./Гкал	$b_{\scriptscriptstyle \mathrm{T}}$	$\begin{array}{l} \Delta b_{\scriptscriptstyle T3} + (b^{\scriptscriptstyle \Pi(9K)}{}_{\scriptscriptstyle T} \cdot (100 \text{-} \alpha_{\scriptscriptstyle \PiBK} \text{-} \\ \alpha_{\scriptscriptstyle Hac}) + b^{\scriptscriptstyle \Pi(HBK)}{}_{\scriptscriptstyle T} \cdot \alpha_{\scriptscriptstyle \PiBK}) / 100 \end{array}$	161,5	207,3	200,0	169,9
Расход условного топлива на отпущенную электроэнергию	тыс. т у.т.	Вэ	b _э ·Э₀л/1000	452,0	34,5	100,7	587,2
Расход условного топлива на отпущенную тепловую энергию	тыс. т у.т.	$B_{\scriptscriptstyle \mathrm{T}}$	$b_{\mathrm{T}} \cdot Q_{\mathrm{OT}} / 1000$	679,6	111,9	102,6	894,1
Общестанционный расход условного топлива	тыс. т у.т.	В	$B_{\scriptscriptstyle 3} + B_{\scriptscriptstyle \mathrm{T}}$	1131,5	146,4	203,4	1481,3
			2038 г.				
Число часов работы	Ч	τ	заполняется	2904	2184	3672	-
Суммарная нагрузка турбин	МВт	$N_{\scriptscriptstyle \mathrm{T}}$	заполняется	770	149	101	-
Выработка электроэнергии	тыс. кВт∙ч	Э	N τ \cdot τ	2237120	325746	369726	2932005
Отпуск электроэнергии	тыс. кВт∙ч	Эот	$Э$ - $Э_{\kappa}^{ cH}$ - $Э_{\tau}^{ cH}$ - $Э_{ ext{Tenn}}$ - $Э_{ ext{nap}}$	2077609	153790	282204	2513602
Отпуск тепловой энергии	Гкал	Q _{ot}	$ar{ ext{Q}}_{ ext{ot}} \cdot au$	4265930	547242	520040	5333746
Значение удельного расхода тепла брутто на турбоагрегат	ккал/кВт∙ч	$q_{\scriptscriptstyle \mathrm{T}}{}^{\mathrm{fip}}$	в расчет	1348	1362	2054	1439
Расход тепла на выработку электроэнергии	Гкал	ęQ	$N_{\scriptscriptstyle T} \cdot q_{\scriptscriptstyle T} \cdot \tau/1000$	3015638	443666	759417	-

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
Коэффициент							1
стабилизации тепловых	%	Кст	заполняется	0,1	0,1	0,1	-
процессов							
Доля отпуска тепла, обеспечиваемая за счет нагрева воды в сетевых насосах	%	$lpha_{ m Hac}$	заполняется	3,0	2,0	1,5	-
Значение коэффициента потерь при отпуске тепла внешним потребителям от энергетических котлов	%	${f lpha}_{ m nor}^{ m 3K}$	заполняется	1,7	1,3	0,7	-
Коэффициент теплового потока	%	$\eta_{\scriptscriptstyle { m TII}}$	$100\text{-}1,5\!\cdot\!\Sigma Q_\kappa^{6p(\text{hom})}\!/\!\Sigma Q_\kappa^{6p}$	98,2	98,2	97,6	-
Дополнительные затраты электроэнергии на насосы XBO для восполнения невозврата конденсата от потребителя	тыс. кВт∙ч	\Im_{nap}	заполняется	494	493	477	-
Выработка тепла брутто котлами	Гкал/ч	$\bar{Q}_{\kappa}{}^{6p}$	заполняется	1841	1643	606	-
Выработка тепла брутто котлами	Гкал	$Q_{\kappa}{}^{6p}$	$\overline{Q}_{\kappa}{}^{6p}\cdot \tau$	5346992,719	3588393,059	2226337, 639	-
Затраты электроэнергии на теплофикационную установку	тыс. кВт∙ч	Этепл	заполняется	105851	107173	44213	-
Значение КПД брутто группы пиковых котлов	%	$\eta_{\kappa(\Pi BK)}{}^{ar{b}p}$	заполняется	92,4	0	0	-
Значение КПД брутто группы энергетических котлов	%	$\eta_{\kappa(\ni\kappa)}{}^{6p}$	заполняется	92,5	92,7	92,4	-
значение суммарного расхода тепла на собственные нужды котла	Гкал	$Q_{\kappa}^{ ch}$	заполняется	38624	45304	26052	-
значение суммарного расхода тепла на	Гкал	$Q_{\scriptscriptstyle T}^{\; c_{\scriptscriptstyle H}}$	заполняется	8844	10054	3820	-

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
собственные нужды турбины	_						
значение суммарного расхода электроэнергии на собственные нужды котла	тыс. кВт∙ч	$\mathfrak{I}_{\kappa}^{ch}$	заполняется	190603	31565	46918	-
значение суммарного расхода электроэнергии на собственные нужды турбины	тыс. кВт∙ч	Этсн	заполняется	27964	5016	11425	-
Коэффициент, учитывающий тепло дополнительно внесенное в топку	%	KQ	заполняется	0,98	0,98	0,98	-
Суммарный расход тепла на собственные нужды котла	%	q_{κ}^{ch}	$100\!\cdot\! Q_\kappa^{\ {\scriptscriptstyle CH}}\!/Q_\kappa^{\ {\scriptscriptstyle \bar{G}}p}$	0,7	1,3	1,2	-
Суммарный расход электроэнергии на собственные нужды котлов	%	Эксн%	100∙Эксн/Э	9	10	13	-
Суммарный расход тепла на собственные нужды турбин	%	$q_{\scriptscriptstyle \mathrm{T}}^{}}$	$Q_{\mathrm{T}}^{\mathrm{ch}/\!}(q_{\mathrm{T}}^{\mathrm{6p}}\cdot 3\cdot 10^{-5})$	0,3	2,3	0,5	-
Суммарный расход электроэнергии на собственные нужды турбин	%	Этсн%	$100 \cdot 3_{\mathrm{T}}^{\mathrm{cH}/3}$	1,3	1,5	3,1	-
Удельный расход тепла нетто на турбоагрегат	ккал/кВт∙ч	$q_{\scriptscriptstyle \mathrm{T}}^{\scriptscriptstyle \mathrm{H}}$	$q_{_{\rm T}}{}^{\rm fp} \cdot (100 + q_{_{\rm T}}{}^{\rm ch}) / (100 - 3_{\rm ch})$	1369	1415	2130	-
Доля отпуска тепла пиковыми котлами	%	$lpha_{\scriptscriptstyle \Pi B K}$	$100\!\cdot\! Q^{\text{\tiny IIBK}}{}_{\text{\tiny OT}}\!/Q_{\text{\tiny OT}}$	34,3	0,0	0,0	27,4
Исходно-номинальное значение удельного расхода тепла на производство электроэнергии	Гкал	Q ₉	$q_{\scriptscriptstyle T}^{6p}\cdot 3\cdot 10^{-3}$	3015638	443666	759417	-
Нагрев воды в сетевых насосах	Гкал	Q ^{гв} нас	$Q_{\text{ot}} \cdot \alpha_{\text{hac}} / 100$	128493	10794	7933	-

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
Коэффициент отнесения затрат топлива энергетическими котлами на производство электроэнергии	ед	К _э	$(Q_9 + Q_T^{cH})/(Q_9 + Q_T^{cH} + (Q_{oT} - Q_{Hac}) \cdot (100 + \alpha_{HoT}^{9K}) \cdot 10^{-2})$	0,4	0,5	0,6	-
Удельный расход электроэнергии на собственные нужды, отнесенного на производство электроэнергии	%	Э,	$eta_{_{\mathrm{T}}}^{c_{H}\%}\!\!+\!\! \mathrm{K}_{_{\!9}}\!\!\cdot\!\! eta_{_{\!K}}^{c_{H}\%}$	4,8	6,0	10,7	-
Номинальное значение КПД нетто котлов	%	$\eta_{\kappa(\ni\kappa)}{}^{^{_{_{\!H}}}}$	$\eta_{\kappa(3\kappa)}^{6p} \cdot (100 - q_{\kappa}^{cH}) \cdot (100 - \Im_{3}) / (100 \cdot K_{Q} \cdot (100 - \Im_{T}^{cH}))$	90,3	89,2	85,9	-
Удельный расход условного топлива на отпущенную электроэнергию	г у.т./кВт·ч	b_9	$100 \cdot q_{\rm T}^{\rm H} \cdot (100 + K_{\rm cr}) / \eta_{\rm K(9K)}^{\rm H} \cdot \eta_{\rm TH} \cdot 7$	220,7	230,9	363,3	237,4
Промежуточный удельный расход условного топлива на тепловую энергию по энергетическим котлам	кг у.т./Гкал	$b^{\pi(\mathfrak{s}\kappa)}{}_{\scriptscriptstyle{T}}$	$(100 + \alpha_{\text{пот}}^{\text{эк(H)}}) \cdot (100 + K_{\text{ст}}) \cdot 10^3 / (\eta_{\text{к(эк)}}^{\text{H}} \cdot \eta_{\text{тп}} \cdot 7)$	164,0	165,3	171,7	-
Промежуточный удельный расход топлива на тепловую энергию по пиковым котлам	кг у.т./Гкал	р _{п(нвк)} ^т	10 ⁵ / 7·η _{κ(πβκ)} ⁶ p	154,6	0,0	0,0	-
Увеличение удельного расхода условного топлива вследствие дополнительных затрат электроэнергии	кг у.т./Гкал	$\Delta b_{r_{2}}$	$ m Э_{ m TeIII} \cdot b_3 / Q_{ m or}$	5,5	45,2	30,9	-
Удельный расход условного топлива на отпущенную тепловую энергию	кг у.т./Гкал	b_{r}	$\begin{array}{l} \Delta b_{\mathrm{T}^{3}} + (b^{\mathrm{\Pi(3K)}}{}_{\mathrm{T}} \cdot (100 \text{-} \alpha_{\mathrm{\Pi BK}} \text{-} \\ \alpha_{\mathrm{Hac}}) + b^{\mathrm{\Pi(HBK)}}{}_{\mathrm{T}} \cdot \alpha_{\mathrm{\Pi BK}}) / 100 \end{array}$	161,3	207,2	200,0	169,8

Показатель	Размерност ь	Обозначени е	Расчетная формула	Зимний	Переходны й	Летний	Год
Расход условного топлива на отпущенную электроэнергию	тыс. т у.т.	В	$b_9 \cdot 3_{or} / 1000$	458,6	35,5	102,5	596,6
Расход условного топлива на отпущенную тепловую энергию	тыс. т у.т.	$B_{\scriptscriptstyle \mathrm{T}}$	$b_{\mathrm{T}} \cdot Q_{\mathrm{oT}} / 1000$	688,3	113,4	104,0	905,7
Общестанционный расход условного топлива	тыс. т у.т.	В	$B_9 + B_T$	1146,8	148,9	206,5	1502,3

ТоТЭЦ, вариант Б.1

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год				
	2019 Γ.										
Число часов работы	Ч	τ	заполняется	2160	2611	3989	-				
Суммарная нагрузка турбин	МВт	$N_{\scriptscriptstyle \mathrm{T}}$	заполняется	253	169	128	-				
Выработка электроэнергии	тыс. кВт∙ч	Э	Ντ·τ	841909	220553	327146	1 389 746,62				
Отпуск электроэнергии	тыс. кВт·ч	$\mathcal{F}_{ m ot}$	3 - 9_{κ} ^{сн} - 9_{τ} ^{сн} - $9_{\tau eпл}$ - $9_{пар}$	768112	158655	241944	1 168 709,86				
Отпуск тепловой энергии	Гкал	Q_{ot}	$\overline{Q}_{ ext{ot}} \cdot au$	2302149	637202	1091022	4 030 373,20				
Значение удельного расхода тепла брутто на турбоагрегат	ккал/кВт∙ч	${q_{\scriptscriptstyle \rm T}}^{\rm 6p}$	в расчет	1199	1711	1375	1428				
Расход тепла на выработку электроэнергии	Гкал	Qэ	$N_{\scriptscriptstyle T} \cdot q_{\scriptscriptstyle T} \cdot \tau/1000$	655230	754994	702064	-				
Коэффициент стабилизации тепловых процессов	%	Кст	заполняется	0,1	0,1	0,1	-				
Доля отпуска тепла, обеспечиваемая за	%	$lpha_{ m Hac}$	заполняется	7,2	6,6	3,4	-				

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
счет нагрева воды в							
сетевых насосах							
Значение							
коэффициента							
потерь при отпуске							
тепла внешним	%	$\alpha_{\text{not}}^{_{\mathfrak{I}}}$	заполняется	2,3	1,9	4,6	-
потребителям от							
энергетических							
котлов							
Коэффициент	%		$100\text{-}1,5\cdot\Sigma Q_{\scriptscriptstyle K}{}^{\mathrm{6p(Hom)}}/\Sigma Q_{\scriptscriptstyle K}{}^{\mathrm{6p}}$	98,4	98,1	98,1	
теплового потока	%0	$\eta_{\scriptscriptstyle ext{T}\Pi}$	$100-1,3\cdot2Q_{\kappa}^{-r}$	98,4	98,1	98,1	-
Дополнительные							
затраты							
электроэнергии на							
насосы ХВО для	D	2		51	57	59	
восполнения	тыс. кВт∙ч	$ m Э_{пар}$	заполняется	51	57	39	-
невозврата							
конденсата от							
потребителя							
Выработка тепла	Гкал/ч	$\overline{\mathrm{Q}}_{\kappa}^{6p}$	ронониястоя	941	778	602	
брутто котлами	I Kaji/ 4	Q _K -r	заполняется	941	776	002	<u>-</u>
Выработка тепла	Гкал	$Q_{\kappa}{}^{6p}$	$\overline{\mathrm{Q}}_{\scriptscriptstyle{\mathrm{K}}}{}^{\mathrm{\mathrm{fp}}}\cdot au$	2032560	2031358	2401378	_
брутто котлами	1 KaJi	Q _K	Q_{k} · ι	2032300	2031336	2401376	
Затраты							
электроэнергии на	тыс. кВт∙ч	$\mathfrak{I}_{\scriptscriptstyle{\mathrm{Тепл}}}$	заполняется	16680	11794	9877	_
теплофикационную	IBIC. KD1 4	У тепл	заполнистей	10000	11//-	7011	_
установку							
Значение КПД							
брутто группы	%	$\eta_{\kappa(\Pi B K)}{}^{6p}$	заполняется	0	0	0	-
пиковых котлов							
Значение КПД							
брутто группы	%	п обр	заполняется	91,6	91,5	91,3	_
энергетических	/0	$\eta_{\kappa(\ni\kappa)}{}^{\text{\rm fp}}$	котокинонье	91,0	91,5	91,5	-
котлов							

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
значение							
суммарного расхода							
тепла на	Гкал	$Q_{\kappa}^{\ ch}$	заполняется	44716	30470	24014	-
собственные нужды							
котла							
значение							
суммарного расхода							
тепла на	Гкал	$Q_{\scriptscriptstyle T}^{cH}$	заполняется	9717	3744	204	-
собственные нужды							
турбины							
значение							
суммарного расхода							
электроэнергии на	тыс. кВт·ч	$\mathfrak{I}_{\kappa}^{\text{ch}}$	заполняется	47349	46303	75063	-
собственные нужды							
котла							
значение							
суммарного расхода							
электроэнергии на	тыс. кВт∙ч	$\mathfrak{I}_{\scriptscriptstyle \mathrm{T}}^{\scriptscriptstyle \mathrm{CH}}$	заполняется	6457	7863	14815	_
собственные нужды		0 1	S W 110111111011			- 10-2	
турбины							
Коэффициент,							
учитывающий тепло							
дополнительно	%	K_{Q}	заполняется	1	1	1	-
внесенное в топку							
Суммарный расход							
тепла на			_				
собственные нужды	%	$q_{\kappa}^{\ ch}$	$100 \cdot Q_{\kappa}^{ \mathrm{ch}} / Q_{\kappa}^{ \mathrm{fp}}$	2,2	1,5	1,0	-
котла							
Суммарный расход							
электроэнергии на							
собственные нужды	%	$Э_{\kappa}^{ch\%}$	$100 \cdot \Theta_{\kappa}{}^{\mathrm{cH}} / \Theta$	6	21	23	-
котлов							
Суммарный расход							
	%	$q_{\scriptscriptstyle \mathrm{T}}^{}}$	$Q_{\scriptscriptstyle \mathrm{T}}{}^{\mathrm{c}\mathrm{H}}/(q_{\scriptscriptstyle \mathrm{T}}{}^{\mathrm{6p}}\cdot 3\cdot 10^{-5})$	1,0	1,0	0,0	-
тепла на		1					

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
собственные нужды турбин							
Суммарный расход электроэнергии на собственные нужды турбин	%	Эт сн%	100·Э _т сн/Э	0,8	3,6	4,5	-
Удельный расход тепла нетто на турбоагрегат	ккал/кВт∙ч	$q_{\scriptscriptstyle \mathrm{T}}^{^{_{\mathrm{H}}}}$	$q_{\rm T}^{\rm 6p} \cdot (100 + q_{\rm T}^{\rm ch})/(100 - 3_{\rm ch})$	1220	1792	1441	-
Доля отпуска тепла пиковыми котлами	%	$lpha_{\scriptscriptstyle \Pi B K}$	$100 \cdot Q^{\text{\tiny IBK}}{}_{\text{\tiny OT}}/Q_{\text{\tiny OT}}$	0,0	0,0	0,0	-
Исходно- номинальное значение удельного расхода тепла на производство электроэнергии	Гкал	Q_{9}	$q_{\scriptscriptstyle \mathrm{T}}^{}\mathrm{6p}}\cdot 3\cdot 10^{-3}$	1009448	377366	449826	1
Нагрев воды в сетевых насосах	Гкал	Q ^{гв} нас	$Q_{ m or} \cdot lpha_{ m Hac} / 100$	165755	42055	37095	-
Коэффициент отнесения затрат топлива энергетическими котлами на производство электроэнергии	ед	К,	$(Q_{9}+Q_{T}^{\text{ cH}})/(Q_{9}+Q_{T}^{\text{ cH}}+(Q_{\text{or}}-Q_{\text{Hac}})\cdot(100+lpha_{ ext{nor}}^{38})\cdot10^{-2})$	0,2	0,6	0,4	-
Удельный расход электроэнергии на собственные нужды, отнесенного на производство электроэнергии	%	Э,	$\mathcal{G}_{\scriptscriptstyle{\mathrm{T}}}^{\scriptscriptstyle{CH}\%}\!\!+\!K_{\scriptscriptstyle{\mathfrak{F}}}\!\cdot\!\mathfrak{F}_{\scriptscriptstyle{K}}^{\scriptscriptstyle{CH}\%}$	2,1	15,2	13,5	-
Номинальное значение КПД нетто котлов	%	$\eta_{\kappa(\ni\kappa)}{}^{^{_{_{\!H}}}}$	$\eta_{\kappa(3\kappa)}^{6p} \cdot (100 - q_{\kappa}^{cH}) \cdot (100 - \Im_{3}) / (100 \cdot K_{Q} \cdot (100 - \Im_{3})) / (100 \cdot K_{Q} \cdot (100 - \Im_{3}))$	88,4	79,2	81,9	-

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
Удельный расход условного топлива на отпущенную электроэнергию	г у.т./кВт·ч	b_9	$100 \cdot q_{\scriptscriptstyle \mathrm{T}}{}^{\scriptscriptstyle \mathrm{H}} \cdot (100 + K_{\scriptscriptstyle \mathrm{CT}}) / \eta_{\scriptscriptstyle \mathrm{K}(9\mathrm{K})}{}^{\scriptscriptstyle \mathrm{H}} \cdot \eta_{\scriptscriptstyle \mathrm{TII}} \cdot 7$	200,5	329,7	256,3	229,6
Промежуточный удельный расход условного топлива на тепловую энергию по энергетическим котлам	кг у.т./Гкал	$b^{\pi(\mathfrak{s}\kappa)}{}_{\scriptscriptstyle{\mathrm{T}}}$	$(100 + \alpha_{\text{пот}}^{}}) \cdot (100 + K_{\text{ct}}) \cdot 10^{3} / (\eta_{\text{K(3K)}}^{}} \cdot \eta_{\text{TI}} \cdot 7)$	168,2	187,5	186,1	-
Промежуточный удельный расход топлива на тепловую энергию по пиковым котлам	кг у.т./Гкал	$b^{\pi({\scriptscriptstyle HBK})}{}_{\scriptscriptstyle T}$	$10^{5/}~7 \cdot \eta_{\kappa(\pi B \kappa)}{}^{6p}$	0,0	0,0	0,0	-
Увеличение удельного расхода условного топлива вследствие дополнительных затрат электроэнергии	кг у.т./Гкал	$\Delta b_{ ext{r} ext{9}}$	$ m Э_{ m тепл}\cdot b_{ m 3}/Q_{ m or}$	1,5	6,1	2,3	-
Удельный расход условного топлива на отпущенную тепловую энергию	кг у.т./Гкал	b_{r}	$\begin{array}{l} \Delta b_{\scriptscriptstyle T9} + (b^{\scriptscriptstyle \Pi(9K)}_{\scriptscriptstyle T} \cdot (100 \text{-} \alpha_{\scriptscriptstyle \PiBK} \text{-} \\ \alpha_{\scriptscriptstyle Hac}) + b^{\scriptscriptstyle \Pi(HBK)}_{\scriptscriptstyle T} \cdot \alpha_{\scriptscriptstyle \PiBK}) / 100 \end{array}$	157,5	181,2	182,1	167,9
Расход условного топлива на отпущенную электроэнергию	тыс. т у.т.	B_9	$b_9 \cdot \Theta_{or}/1000$	154,0	52,3	62,0	268,4
Расход условного топлива на отпущенную тепловую энергию	тыс. т у.т.	$B_{\scriptscriptstyle T}$	$b_{\scriptscriptstyle T}{\cdot}Q_{\scriptscriptstyle OT}/1000$	362,6	115,5	198,7	676,8

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
Общестанционный расход условного топлива	тыс. т у.т.	В	$\mathrm{B}_{\scriptscriptstyle{9}}\!\!+\!\mathrm{B}_{\scriptscriptstyle{\mathrm{T}}}$	516,7	167,8	260,7	945,1
			2020 г.				
Число часов работы	Ч	τ	заполняется	2160	2611	3989	-
Суммарная нагрузка турбин	МВт	$N_{\scriptscriptstyle \mathrm{T}}$	заполняется	253	169	128	-
Выработка электроэнергии	тыс. кВт∙ч	Э	Ντ·τ	842577	220728	327406	1 390 850,53
Отпуск электроэнергии	тыс. кВт∙ч	$\mathcal{F}_{ m ot}$	9- 9 к ^{сн} - 9 т сн- 9 тепл- 9 пар	768478	158489	241853	1 168 820,44
Отпуск тепловой энергии	Гкал	Q_{ot}	$\overline{\mathrm{Q}}_{ ext{ot}} \cdot au$	2303978	637708	1091889	4 033 574,60
Значение удельного расхода тепла брутто на турбоагрегат	ккал/кВт∙ч	$q_{\scriptscriptstyle \mathrm{T}}^{}\mathrm{f}\mathrm{p}}$	в расчет	1204	1714	1377	1414
Расход тепла на выработку электроэнергии	Гкал	Qэ	$N_{\scriptscriptstyle T} \cdot q_{\scriptscriptstyle T} \cdot \tau/1000$	657962	756318	703085	-
Коэффициент стабилизации тепловых процессов	%	Кст	заполняется	0,1	0,1	0,1	-
Доля отпуска тепла, обеспечиваемая за счет нагрева воды в сетевых насосах	%	$lpha_{ m Hac}$	заполняется	7,2	6,6	3,4	-
Значение коэффициента потерь при отпуске тепла внешним потребителям от энергетических котлов	%	$lpha_{\mathrm{nor}}^{-\mathrm{sk}}$	заполняется	2,3	1,9	4,6	-
Коэффициент теплового потока	%	$\eta_{\scriptscriptstyle T\Pi}$	$100\text{-}1,5\cdot\Sigma Q_{\kappa}^{6p(\text{hom})}/\Sigma Q_{\kappa}^{6p}$	98,4	98,1	98,1	-

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
Дополнительные затраты электроэнергии на насосы ХВО для восполнения невозврата конденсата от потребителя	тыс. кВт∙ч	\mathfrak{Z}_{map}	заполняется	353	398	409	-
Выработка тепла брутто котлами	Гкал/ч	$\overline{Q}_{\kappa}^{6p}$	заполняется	941	778	602	-
Выработка тепла брутто котлами	Гкал	$Q_{\kappa}{}^{6p}$	$\bar{Q}_{\kappa^{6p}} \cdot \tau$	2032560	2031358	2401378	-
Затраты электроэнергии на теплофикационную установку	тыс. кВт∙ч	Этепл	заполняется	16680	11794	9877	-
Значение КПД брутто группы пиковых котлов	%	$\eta_{\kappa(\Pi BK)}{}^{6p}$	заполняется	0	0	0	-
Значение КПД брутто группы энергетических котлов	%	$\eta_{\kappa(\ni\kappa)}{}^{6p}$	заполняется	91,6	91,5	91,3	-
значение суммарного расхода тепла на собственные нужды котла	Гкал	Q_{κ}^{ch}	заполняется	44716	30470	24014	-
значение суммарного расхода тепла на собственные нужды турбины	Гкал	$Q_{\scriptscriptstyle \mathrm{T}}^{\mathrm{ch}}$	заполняется	9717	3744	204	-
значение суммарного расхода	тыс. кВт·ч	$\mathfrak{I}_{\kappa}^{\mathrm{ch}}$	заполняется	47349	46303	75063	-

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
электроэнергии на							
собственные нужды							
котла							
значение							
суммарного расхода							
электроэнергии на	тыс. кВт∙ч	$\mathfrak{I}_{\mathtt{T}}^{\mathtt{ch}}$	заполняется	6457	7863	14815	-
собственные нужды							
турбины							
Коэффициент,							
учитывающий тепло	%	K_{Q}	заполняется	1	1	1	_
дополнительно	70	10	Sullosimetes	1	1	1	
внесенное в топку							
Суммарный расход							
тепла на	%	$q_{\kappa}^{\ c_{\rm H}}$	$100 \cdot Q_{\scriptscriptstyle K}{}^{ m ch}/Q_{\scriptscriptstyle K}{}^{ m óp}$	2,2	1,5	1,0	_
собственные нужды	70	q ĸ	100 Q _K / Q _K	2,2	1,5	1,0	
котла							
Суммарный расход							
электроэнергии на	%	Эксн%	$100 \cdot \exists_{\kappa}^{\text{ cH}} / \exists$	6	21	23	_
собственные нужды	70	Ŭ K	100 3 _k 73	o o	21	23	
КОТЛОВ							
Суммарный расход							
тепла на	%	${q_{\scriptscriptstyle \mathrm{T}}}^{\mathrm{ch}}$	$Q_{\rm T}^{\rm cH}/(q_{\rm T}^{\rm fp}\cdot 3\cdot 10^{-5})$	1,0	1,0	0,0	_
собственные нужды	70	4 1	Q1 /(q1 3 10)	1,0	1,0	0,0	
турбин							
Суммарный расход							
электроэнергии на	%	$\mathbf{\mathcal{F}}_{\mathtt{T}}^{\mathtt{ch}\%}$	$100 \cdot 9_{\scriptscriptstyle \mathrm{T}}^{\scriptscriptstyle\mathrm{ch}} \! / \! 9$	0,8	3,6	4,5	_
собственные нужды	, ,	J 1		0,0	2,0	.,e	
турбин							
Удельный расход	, -		5n (100				
тепла нетто на	ккал/кВт·ч	$q_{\scriptscriptstyle \mathrm{T}}{}^{\scriptscriptstyle \mathrm{H}}$	$q_{\rm T}^{\rm 6p} \cdot (100 + q_{\rm T}^{\rm ch}) / (100 - \Theta_{\rm ch})$	1225	1795	1443	-
турбоагрегат							
Доля отпуска тепла	%	$lpha_{\scriptscriptstyle \Pi B K}$	$100\!\cdot\! \mathrm{Q}^{\scriptscriptstyle \Pi \mathrm{BK}}{}_{\scriptscriptstyle \mathrm{OT}}\!/\mathrm{Q}_{\scriptscriptstyle \mathrm{OT}}$	0,0	0,0	0,0	-
пиковыми котлами	, •	IIBK	200 X 011 X 01	-,-	-,-	-,-	
Исходно-	Гкал	$Q_{\scriptscriptstyle 9}$	$q_{\scriptscriptstyle \mathrm{T}}{}^{\mathrm{6p}}\cdot 3\cdot 10^{-3}$	1014463	378328	450838	_
номинальное	1 11001	₹3	71 3 10	1011100	2.0020	.2000	

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
значение удельного							
расхода тепла на							
производство							
электроэнергии							
Нагрев воды в	Гкал	Q ^{rB} _{Hac}	$ m Q_{or} \cdot lpha_{ m Hac} / 100$	165886	42089	37124	_
сетевых насосах	1 KaJi	Q нас	Qot Chac/100	103000	42007	37124	_
Коэффициент							
отнесения затрат							
топлива			$(Q_{3}+Q_{T}^{cH})/(Q_{3}+Q_{T}^{cH}+(Q_{oT}-$				
энергетическими	ед	Кэ	$Q_{\text{Hac}}^{\text{rB}} \cdot (100 + \alpha_{\text{nor}}^{\text{sK}}) \cdot 10^{-2})$	0,2	0,6	0,4	-
котлами на			Q Hac) (100 Cunor) 10)				
производство							
электроэнергии							
Удельный расход							
электроэнергии на							
собственные нужды,	%	$\Theta_{\mathfrak{I}}$	$P_{\mathtt{L}}^{cH\%} + K_{\mathtt{P}} \cdot P_{\mathtt{K}}^{cH\%}$	2,1	15,2	13,5	
отнесенного на	/0	J ₉	$\mathcal{I}_{T} \cap \mathcal{K}_{F} \mathcal{I}_{K}$	2,1	13,2	13,3	-
производство							
электроэнергии							
Номинальное			$n = \frac{5p \cdot (100 - a^{\text{cH}}) \cdot (100 - 3)}{(100 \cdot \text{Ke}) \cdot (100 - 3)}$				
значение КПД нетто	%	$\eta_{\kappa(\mathfrak{I})}^{\mathrm{H}}$	$\eta_{\kappa(3\kappa)}^{6p} \cdot (100 - q_{\kappa}^{cH}) \cdot (100 - 3) / (100 \cdot K_{Q} \cdot (100 - 3))$	88,4	79,2	81,9	-
котлов			9 _T))				
Удельный расход							
условного топлива	г у.т./кВт·ч	$\mathfrak{b}_{\scriptscriptstyle 9}$	$100 \cdot q_{\scriptscriptstyle \mathrm{T}}^{\scriptscriptstyle \mathrm{H}} \cdot (100 + K_{\scriptscriptstyle \mathrm{CT}}) / \eta_{\scriptscriptstyle \mathrm{K}(\scriptscriptstyle \mathrm{2K})}^{\scriptscriptstyle \mathrm{H}} \cdot \eta_{\scriptscriptstyle \mathrm{TH}} \cdot 7$	201,4	330,2	256,7	230,3
на отпущенную	1 y.1./kD1 1	03	100 q _T (100 11c _T) 1	201,4	330,2	250,7	230,3
электроэнергию							
Промежуточный							
удельный расход							
условного топлива							
на тепловую	кг у.т./Гкал	$b^{\pi(\mathfrak{g}_{K})}{}_{\mathrm{T}}$	$(100 + \alpha_{\text{пот}}^{^{3K(H)}}) \cdot (100 + K_{\text{ct}}) \cdot 10^3 / (\eta_{\text{K}(3K)}^{^{H}} \cdot \eta_{\text{TI}} \cdot 7)$	168,2	187,5	186,1	-
энергию по							
энергетическим							
котлам							
Промежуточный	кг у.т./Гкал	$b^{{\scriptscriptstyle \Pi}({\scriptscriptstyle HBK})}{}_{\scriptscriptstyle m T}$	$10^5 / 7 \cdot \eta_{\kappa(\Pi B \kappa)}{}^{6p}$	0,0	0,0	0,0	_
удельный расход	Ki j.1./1 Kasi	О Т	10 / / Цк(пвк)	0,0	0,0	0,0	

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
топлива на тепловую							
энергию по пиковым							
котлам							
Увеличение							
удельного расхода							
условного топлива	-						
вследствие	кг у.т./Гкал	$\Delta b_{{\scriptscriptstyle T}{\scriptscriptstyle 9}}$	$\Theta_{ ext{тепл}} \cdot b_{ ext{-}}/Q_{ ext{от}}$	1,5	6,1	2,3	-
дополнительных							
затрат							
электроэнергии							
Удельный расход			4.1 (4.7(0)) (4.0.0				
условного топлива	кг у.т./Гкал	$\mathbf{b}_{\scriptscriptstyle\mathrm{T}}$	$\Delta b_{T3} + (b^{\pi(9K)})_{T} \cdot (100 - \alpha_{\pi BK} - 400)_{T}$	157,5	181,2	182,1	167,9
на отпущенную	,		$\alpha_{\text{\tiny Hac}}) + b^{\pi(\text{\tiny HBK})}_{}} \cdot \alpha_{\pi \text{\tiny BK}}) / 100$,	,	,	,
тепловую энергию							
Расход условного							
топлива на	тыс. т у.т.	$B_{\mathfrak{I}}$	$b_{\text{\tiny 9}} \cdot \Im_{\text{\tiny OT}} / 1000$	154,8	52,3	62,1	269,2
отпущенную	,	-		ŕ	,	ŕ	,
электроэнергию							
Расход условного							
топлива на	тыс. т у.т.	$\mathrm{B}_{\scriptscriptstyle\mathrm{T}}$	$b_{\scriptscriptstyle \mathrm{T}}{\cdot}Q_{\scriptscriptstyle \mathrm{OT}}/1000$	362,9	115,6	198,8	677,3
отпущенную	_		`				
тепловую энергию							
Общестанционный		В	$\mathrm{B_9}\text{+}\mathrm{B_{\scriptscriptstyle T}}$	5177	167.0	260.0	946,5
расход условного	тыс. т у.т.	Б	$\mathbf{D}_{\mathfrak{I}}^{-}$	517,7	167,9	260,9	940,3
топлива			2021 г.				
Число часов работы	ч	τ	заполняется	2160	2611	3989	_
•	7	· ·	заполняется	2100	2011	3909	_
Суммарная нагрузка турбин	МВт	$N_{\scriptscriptstyle \mathrm{T}}$	заполняется	253	169	128	-
Выработка							
электроэнергии	тыс. кВт∙ч	Э	$N au \cdot au$	842871	220805	327520	1 391 335,89
Отпуск							
электроэнергии	тыс. кВт∙ч	$\Theta_{ m or}$	$Э$ - 9_{κ} ^{сн} - 9_{τ} сн- $9_{\tau enn}$ - $9_{пар}$	768731	158558	241967	1 169 256,76
Отпуск тепловой							
7	Гкал	Q_{ot}	$\overline{\mathrm{Q}}_{ ext{ot}}\cdot au$	2304782	637931	1092270	4 034 982,20
энергии		_					

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
Значение удельного расхода тепла брутто на турбоагрегат	ккал/кВт∙ч	$q_{\scriptscriptstyle \rm T}{}^{\rm 6p}$	в расчет	1209	1718	1378	1417
Расход тепла на выработку электроэнергии	Гкал	Qэ	$N_{\scriptscriptstyle T}\cdot q_{\scriptscriptstyle T}\cdot au/1000$	660694	758083	703596	-
Коэффициент стабилизации тепловых процессов	%	Кст	заполняется	0,1	0,1	0,1	-
Доля отпуска тепла, обеспечиваемая за счет нагрева воды в сетевых насосах	%	$lpha_{ m Hac}$	заполняется	7,2	6,6	3,4	-
Значение коэффициента потерь при отпуске тепла внешним потребителям от энергетических котлов	%	$lpha_{ ext{not}}^{-9 ext{K}}$	заполняется	2,3	1,9	4,6	-
Коэффициент теплового потока	%	$\eta_{\scriptscriptstyle { m TII}}$	$100\text{-}1,5\cdot\Sigma Q_\kappa^{6p(\text{hom})}\!/\!\Sigma Q_\kappa^{6p}$	98,4	98,1	98,1	-
Дополнительные затраты электроэнергии на насосы ХВО для восполнения невозврата конденсата от потребителя	тыс. кВт∙ч	\mathfrak{I}_{nap}	заполняется	353	398	409	-
Выработка тепла брутто котлами	Гкал/ч	$\overline{Q}_{\kappa}{}^{6p}$	заполняется	941	778	602	-
Выработка тепла брутто котлами	Гкал	$Q_{\kappa}{}^{6p}$	$\bar{Q}_{\kappa}{}^{6p}\cdot \tau$	2032560	2031358	2401378	-

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
Затраты							
электроэнергии на теплофикационную	тыс. кВт·ч	$\Theta_{ ext{тепл}}$	заполняется	16680	11794	9877	-
установку							
Значение КПД							
брутто группы	%	$\eta_{\kappa(\Pi BK)}{}^{6p}$	заполняется	0	0	0	_
пиковых котлов	, ,	· [K(IIBK)	5 00.150.100.1				
Значение КПД							
брутто группы		55					
энергетических	%	$\eta_{\kappa(\ni\kappa)}{}^{6p}$	заполняется	91,6	91,5	91,3	-
котлов							
значение							
суммарного расхода							
тепла на	Гкал	$Q_{\kappa}^{\ ch}$	заполняется	44669	30470	24014	-
собственные нужды							
котла							
значение							
суммарного расхода							
тепла на	Гкал	$Q_{\scriptscriptstyle T}{}^{\scriptscriptstyle \mathrm{CH}}$	заполняется	9758	3752	204	-
собственные нужды							
турбины							
значение							
суммарного расхода							
электроэнергии на	тыс. кВт∙ч	$\mathfrak{I}_{\kappa}^{\mathrm{ch}}$	заполняется	47349	46303	75063	-
собственные нужды							
котла							
значение							
суммарного расхода	_	~ ~~					
электроэнергии на	тыс. кВт∙ч	$\mathfrak{I}_{\mathtt{T}}^{\mathtt{ch}}$	заполняется	6457	7863	14815	-
собственные нужды							
турбины							
Коэффициент,							
учитывающий тепло	%	K_{Q}	заполняется	1	1	1	-
дополнительно		*					
внесенное в топку							

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
Суммарный расход тепла на собственные нужды котла	%	$q_{\kappa}^{\; {}^{ m ch}}$	$100\!\cdot\!Q_{\scriptscriptstyle K}{}^{\scriptscriptstyle \mathrm{CH}}\!/Q_{\scriptscriptstyle K}{}^{\scriptscriptstyle \mathrm{6p}}$	2,2	1,5	1,0	-
Суммарный расход электроэнергии на собственные нужды котлов	%	$\mathfrak{I}_{\kappa}^{\mathrm{ch}\%}$	$100 \cdot Э_{ ext{k}}^{ ext{ch}}/Э$	6	21	23	-
Суммарный расход тепла на собственные нужды турбин	%	$q_{\scriptscriptstyle \mathrm{T}}^{\;\mathrm{ch}}$	$Q_{\mathrm{T}}^{\mathrm{ch}}/(q_{\mathrm{T}}^{\mathrm{6p}}\cdot 3\cdot 10^{-5})$	1,0	1,0	0,0	-
Суммарный расход электроэнергии на собственные нужды турбин	%	$\mathfrak{I}_{\scriptscriptstyle \mathrm{T}}^{\scriptscriptstyle \mathrm{ch}\%}$	$100 \cdot Э_{\scriptscriptstyle m T}^{ m ch}/Э$	0,8	3,6	4,5	-
Удельный расход тепла нетто на турбоагрегат	ккал/кВт∙ч	$q_{\scriptscriptstyle \mathrm{T}}^{^{_{\mathrm{H}}}}$	$q_{_{\mathrm{T}}}^{$	1230	1799	1444	-
Доля отпуска тепла пиковыми котлами	%	$lpha_{\scriptscriptstyle \Pi B K}$	$100 \!\cdot\! Q^{\text{\tiny IBK}}{}_{\text{\tiny OT}} \!/ Q_{\text{\tiny OT}}$	0,0	0,0	0,0	-
Исходно- номинальное значение удельного расхода тепла на производство электроэнергии	Гкал	Q_{9}	$q_{\scriptscriptstyle \mathrm{T}}{}^{6\mathrm{p}}\cdot 3\cdot 10^{-3}$	1019031	379343	451323	-
Нагрев воды в сетевых насосах	Гкал	Q ^{гв} нас	$Q_{\rm or} \cdot \alpha_{\rm \tiny HaC}/100$	165944	42103	37137	-
Коэффициент отнесения затрат топлива энергетическими котлами на	ед	Kэ	$(Q_9 + Q_T^{cH})/(Q_9 + Q_T^{cH} + (Q_{oT} - Q_{Hac}) \cdot (100 + \alpha_{HoT}^{sK}) \cdot 10^{-2})$	0,2	0,6	0,4	-

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
производство	-						
электроэнергии							
Удельный расход							
электроэнергии на							
собственные нужды,	%	$\Theta_{\mathfrak{I}}$	$Э_{r^{ch}}\!\!+\!\!\mathrm{K}_{\mathfrak{I}}\!\!\cdot\!\!\!Э_{\kappa}^{ch}\!$	2.1	15.0	12.4	
отнесенного на	%	$\mathcal{J}_{\mathfrak{I}}$	\mathcal{J}_{T} \mathcal{J}_{K} \mathcal{J}_{K}	2,1	15,2	13,4	-
производство							
электроэнергии							
Номинальное			on (100 ~ CH) (100 D)/(100 IC (100				
значение КПД нетто	%	$\eta_{\kappa(\mathfrak{I})}^{\mathrm{H}}$	$ \eta_{\kappa(3\kappa)}^{\text{op}} \cdot (100 - q_{\kappa}^{\text{cH}}) \cdot (100 - \Im_{3}) / (100 \cdot \text{K}_{Q} \cdot (100 - \Im_{3}) / (100 \cdot $	88,4	79,2	81,9	-
котлов		• , ,	(\mathcal{I}_{T}^{T})				
Удельный расход							
условного топлива	г у.т./кВт·ч	h.	100 a H.(100 LV)/m H.m .7	202.2	331,0	256.0	231,0
на отпущенную	Г у.т./квт-ч	$b_{\mathfrak{I}}$	$100 \cdot q_{\rm T}^{\rm H} \cdot (100 + K_{\rm cT}) / \eta_{{\rm K}(3{\rm K})}^{\rm H} \cdot \eta_{\rm TII} \cdot 7$	202,2	331,0	256,9	231,0
электроэнергию							
Промежуточный							
удельный расход							
условного топлива							
на тепловую	кг у.т./Гкал	$b^{\pi(\mathfrak{i}\kappa)}_{\mathrm{T}}$	$(100+\alpha_{\text{пот}}^{\text{эк(H)}})\cdot(100+K_{\text{ст}})\cdot10^3/(\eta_{\text{к(эк)}}^{\text{H}}\cdot\eta_{\text{тп}}\cdot7)$	168,2	187,5	186,1	-
энергию по							
энергетическим							
котлам							
Промежуточный							
удельный расход							
топлива на тепловую	кг у.т./Гкал	$b^{\pi({\scriptscriptstyle HBK})}{}_{\scriptscriptstyle T}$	$10^5/\ 7 \cdot \eta_{\mathrm{k(IIBK)}}{}^{\mathrm{5p}}$	0,0	0,0	0,0	-
энергию по пиковым							
котлам							
Увеличение							
удельного расхода							
условного топлива							
вследствие	кг у.т./Гкал	$\Delta b_{\scriptscriptstyle \mathrm{T9}}$	$\Theta_{ ext{тепл}} \cdot b_{ ext{-}}/Q_{ ext{от}}$	1,5	6,1	2,3	-
дополнительных							
затрат							
электроэнергии							

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
Удельный расход условного топлива на отпущенную тепловую энергию	кг у.т./Гкал	$b_{\scriptscriptstyle \mathrm{T}}$	$\begin{array}{l} \Delta b_{\mathrm{T} \mathrm{9}} + (b^{\mathrm{\Pi}(\mathrm{9K})}{}_{\mathrm{T}} \cdot (100 \text{-} \alpha_{\mathrm{\Pi}\mathrm{BK}} \text{-} \\ \alpha_{\mathrm{Hac}}) + b^{\mathrm{\Pi}(\mathrm{HBK})}{}_{\mathrm{T}} \cdot \alpha_{\mathrm{\Pi}\mathrm{BK}}) / 100 \end{array}$	157,5	181,2	182,1	167,9
Расход условного топлива на отпущенную электроэнергию	тыс. т у.т.	B_9	b _э ·Э _{от} /1000	155,4	52,5	62,2	270,1
Расход условного топлива на отпущенную тепловую энергию	тыс. т у.т.	$\mathbf{B}_{\scriptscriptstyle\mathrm{T}}$	$b_{\mathrm{r}} \cdot Q_{\mathrm{or}} / 1000$	363,1	115,6	198,9	677,6
Общестанционный расход условного топлива	тыс. т у.т.	В	$\mathrm{B}_{\scriptscriptstyle{9}}\!\!+\!\mathrm{B}_{\scriptscriptstyle{\mathrm{T}}}$	518,5	168,1	261,0	947,7
2022 г.							
Число часов работы	Ч	τ	заполняется	2160	2611	3989	-
Суммарная нагрузка турбин	МВт	$N_{\scriptscriptstyle \mathrm{T}}$	заполняется	253	169	128	-
Выработка электроэнергии	тыс. кВт∙ч	Э	N $ au \cdot au$	843142	220876	327626	1 391 782,64
Отпуск электроэнергии	тыс. кВт·ч	$\mathfrak{Z}_{ ext{or}}$	$\mathbf{\hat{9}}$ - $\mathbf{\hat{9}_{K}}^{\mathtt{ch}}$ - $\mathbf{\hat{9}_{T}}^{\mathtt{ch}}$ - $\mathbf{\hat{9}_{Teпn}}$ - $\mathbf{\hat{9}_{пар}}$	768954	158622	242073	1 169 648,46
Отпуск тепловой энергии	Гкал	Q _{ot}	$\overline{Q}_{ ext{ot}} \cdot au$	2305522	638136	1092620	4 036 277,80
Значение удельного расхода тепла брутто на турбоагрегат	ккал/кВт∙ч	$q_{\scriptscriptstyle \mathrm{T}}^{}\mathrm{6p}}$	в расчет	1215	1721	1380	1421
Расход тепла на выработку электроэнергии	Гкал	Qэ	$N_{\scriptscriptstyle T} \cdot q_{\scriptscriptstyle T} \cdot \tau/1000$	663973	759407	704617	-
Коэффициент стабилизации тепловых процессов	%	Кст	заполняется	0,1	0,1	0,1	-

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
Доля отпуска тепла, обеспечиваемая за счет нагрева воды в сетевых насосах	%	$lpha_{ m Hac}$	заполняется	7,2	6,6	3,4	-
Значение коэффициента потерь при отпуске тепла внешним потребителям от энергетических котлов	%	$lpha_{ ext{not}}^{-3K}$	заполняется	2,3	1,9	4,6	-
Коэффициент теплового потока	%	$\eta_{\scriptscriptstyle T\Pi}$	$100\text{-}1,5\cdot\Sigma Q_\kappa^{~6p(\text{hom})}\!/\!\Sigma Q_\kappa^{~6p}$	98,4	98,1	98,1	-
Дополнительные затраты электроэнергии на насосы ХВО для восполнения невозврата конденсата от потребителя	тыс. кВт∙ч	Эпар	заполняется	353	398	409	-
Выработка тепла брутто котлами	Гкал/ч	$\overline{Q}_{\kappa}{}^{6p}$	заполняется	941	778	602	-
Выработка тепла брутто котлами	Гкал	$Q_{\kappa}{}^{6p}$	${\rm \overline{Q}_{\kappa}}^{\rm fop}\cdot \tau$	2032560	2031358	2401378	1
Затраты электроэнергии на теплофикационную установку	тыс. кВт∙ч	Этепл	заполняется	16680	11794	9877	-
Значение КПД брутто группы пиковых котлов	%	$\eta_{\kappa(\Pi B \kappa)}{}^{6p}$	заполняется	0	0	0	-
Значение КПД брутто группы	%	$\eta_{\kappa({\scriptscriptstyle 3K})}{}^{6p}$	заполняется	91,6	91,5	91,3	-

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
энергетических							
котлов							
значение							
суммарного расхода							
тепла на	Гкал	$Q_{\kappa}^{\ ch}$	заполняется	44669	30470	24014	-
собственные нужды							
котла							
значение							
суммарного расхода							
тепла на	Гкал	$Q_{\scriptscriptstyle \mathrm{T}}^{}}$	заполняется	9806	3759	204	-
собственные нужды							
турбины							
значение							
суммарного расхода							
электроэнергии на	тыс. кВт·ч	$\mathcal{F}_{\kappa}^{cH}$	заполняется	47349	46303	75063	_
собственные нужды	I BIO. KBT T	J K	Sun of the Control of	.,,		7000	
котла							
значение							
суммарного расхода							
электроэнергии на	тыс. кВт·ч	$\mathbf{\mathcal{Y}}_{\scriptscriptstyle \mathrm{T}}^{\scriptscriptstyle\mathrm{ch}}$	заполняется	6457	7863	14815	_
собственные нужды	TBIC. RD1 4	$\mathcal{S}_{\mathtt{T}}$	Sanominetex	0437	7003	14013	
турбины							
Коэффициент,							
учитывающий тепло							
дополнительно	%	K_Q	заполняется	1	1	1	-
внесенное в топку Суммарный расход							
тепла на	%	$q_{\kappa}^{\ c_{\rm H}}$	$100\!\cdot\! \mathrm{Q_{\kappa}^{ch}}/\mathrm{Q_{\kappa}^{6p}}$	2,2	1,5	1,0	-
собственные нужды		_					
котла							
Суммарный расход							
электроэнергии на	%	$\mathfrak{I}_{\kappa}^{\mathrm{ch}\%}$	$100 \cdot Э_{\kappa^{ch}/\! Э}$	6	21	23	-
собственные нужды		-	~				
котлов					1		

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
Суммарный расход тепла на собственные нужды турбин	%	$q_{\scriptscriptstyle \mathrm{T}}^{^{\mathrm{ch}}}$	$Q_{\scriptscriptstyle T}^{\; {\rm ch}/}(q_{\scriptscriptstyle T}^{\; 6p} \cdot 3 \cdot 10^{\text{-5}})$	1,0	1,0	0,0	-
Суммарный расход электроэнергии на собственные нужды турбин	%	$\mathfrak{I}_{\scriptscriptstyle \mathrm{T}}^{\scriptscriptstyle CH\%}$	$100 \cdot 3_{\mathrm{t}}^{\mathrm{ch}} / 3$	0,8	3,6	4,5	1
Удельный расход тепла нетто на турбоагрегат	ккал/кВт∙ч	$q_{\scriptscriptstyle \mathrm{T}}^{\scriptscriptstyle \mathrm{H}}$	$q_{\rm T}^{\rm 6p} \cdot (100 + q_{\rm T}^{\rm ch}) / (100 - 3_{\rm ch})$	1236	1802	1446	-
Доля отпуска тепла пиковыми котлами	%	$lpha_{\scriptscriptstyle \Pi B K}$	$100\!\cdot\! Q^{\text{\tiny IIBK}}{}_{\text{\tiny OT}}\!/Q_{\text{\tiny OT}}$	0,0	0,0	0,0	-
Исходно- номинальное значение удельного расхода тепла на производство электроэнергии	Гкал	Q ₃	$q_{\scriptscriptstyle T}^{\ 6p}\cdot 3\cdot 10^{-3}$	1024417	380127	452123	-
Нагрев воды в сетевых насосах	Гкал	$Q^{\scriptscriptstyle \Gamma B}{}_{\scriptscriptstyle m Hac}$	$Q_{\rm or} \cdot \alpha_{\rm hac} / 100$	165998	42117	37149	-
Коэффициент отнесения затрат топлива энергетическими котлами на производство электроэнергии	ед	K_{9}	$(Q_{3}+Q_{T}^{cH})/(Q_{3}+Q_{T}^{cH}+(Q_{oT}-Q_{Bac})\cdot(100+\alpha_{noT}^{sK})\cdot10^{-2})$	0,2	0,6	0,4	-
Удельный расход электроэнергии на собственные нужды, отнесенного на производство электроэнергии	%	Э,	G^{cH}	2,1	15,2	13,4	-

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
Номинальное значение КПД нетто котлов	%	$\eta_{\kappa(\ni\kappa)}{}^{^{_{\rm H}}}$	$\eta_{\kappa(3\kappa)}^{6p} \cdot (100 - q_{\kappa}^{cH}) \cdot (100 - \Im_{3}) / (100 \cdot K_{Q} \cdot (100 - \Im_{3}))$	88,4	79,2	81,9	-
Удельный расход условного топлива на отпущенную электроэнергию	г у.т./кВт·ч	b_9	$100 \cdot q_{\scriptscriptstyle T}{}^{\scriptscriptstyle H} \cdot (100 + K_{\scriptscriptstyle CT}) / \eta_{\scriptscriptstyle K(\Im K)}{}^{\scriptscriptstyle H} \cdot \eta_{\scriptscriptstyle T\Pi} \cdot 7$	203,2	331,6	257,3	231,8
Промежуточный удельный расход условного топлива на тепловую энергию по энергетическим котлам	кг у.т./Гкал	$b^{\pi(\mathfrak{s}\kappa)}{}_{\scriptscriptstyle{\mathrm{T}}}$	$(100 + \alpha_{\text{пот}}^{}}) \cdot (100 + K_{\text{ct}}) \cdot 10^{3} / (\eta_{\text{K(3K)}}{}^{\text{H}} \cdot \eta_{\text{TII}} \cdot 7)$	168,2	187,5	186,1	-
Промежуточный удельный расход топлива на тепловую энергию по пиковым котлам	кг у.т./Гкал	$b^{\pi({\scriptscriptstyle HBK})}{}_{\scriptscriptstyle T}$	$10^5/\ 7\!\cdot\!\eta_{\mathrm{k(IIBk)}}{}^{\mathrm{6p}}$	0,0	0,0	0,0	-
Увеличение удельного расхода условного топлива вследствие дополнительных затрат электроэнергии	кг у.т./Гкал	$\Delta b_{ ext{ iny T9}}$	Этепл в у Qот	1,5	6,1	2,3	-
Удельный расход условного топлива на отпущенную тепловую энергию	кг у.т./Гкал	b_{r}	$\begin{array}{l} \Delta b_{\mathrm{T}_{3}} + (b^{\pi(\Im K)}{}_{\mathrm{T}} \cdot (100 \text{-} \alpha_{\Pi B K} \text{-} \\ \alpha_{\mathrm{Hac}}) + b^{\pi(\mathrm{HBK})}{}_{\mathrm{T}} \cdot \alpha_{\Pi B K}) / 100 \end{array}$	157,5	181,3	182,1	167,9
Расход условного топлива на отпущенную электроэнергию	тыс. т у.т.	В,	b _э ·Э _{от} /1000	156,3	52,6	62,3	271,1

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
Расход условного топлива на отпущенную тепловую энергию	тыс. т у.т.	$\mathrm{B}_{\scriptscriptstyle \mathrm{T}}$	$b_{\mathrm{T}} \cdot Q_{\mathrm{or}} / 1000$	363,2	115,7	199,0	677,9
Общестанционный расход условного топлива	тыс. т у.т.	В	$\mathbf{B}_{ ext{9}}\mathbf{+}\mathbf{B}_{ ext{T}}$	519,5	168,3	261,2	949,0
			2023 г.				
Число часов работы	Ч	τ	заполняется	2160	2611	3989	-
Суммарная нагрузка турбин	МВт	$N_{\scriptscriptstyle \mathrm{T}}$	заполняется	239	169	128	-
Выработка электроэнергии	тыс. кВт-ч	Э	Ντ·τ	844177	221147	328028	1 393 491,83
Отпуск электроэнергии	тыс. кВт-ч	Эот	$\mathbf{\mathcal{G}}_{K}^{CH}$ - $\mathbf{\mathcal{G}}_{T}^{CH}$ - $\mathbf{\mathcal{G}}_{TEПЛ}^{CH}$ - $\mathbf{\mathcal{G}}_{пар}$	771526	158880	242818	1 173 224,49
Отпуск тепловой энергии	Гкал	Q _{ot}	$\overline{Q}_{ m or} \cdot au$	2308353	638919	1093962	4 041 234,60
Значение удельного расхода тепла брутто на турбоагрегат	ккал/кВт·ч	${q_{\scriptscriptstyle \mathrm{T}}}^{\mathrm{6p}}$	в расчет	1208	1727	1382	1422
Расход тепла на выработку электроэнергии	Гкал	Qэ	$N_{\scriptscriptstyle T} \cdot q_{\scriptscriptstyle T} \cdot au/1000$	623618	762054	705638	-
Коэффициент стабилизации тепловых процессов	%	Кст	заполняется	0,1	0,1	0,1	-
Доля отпуска тепла, обеспечиваемая за счет нагрева воды в сетевых насосах	%	$lpha_{ m Hac}$	заполняется	7,2	6,6	3,4	-
Значение коэффициента потерь при отпуске тепла внешним потребителям от	%	$lpha_{ ext{not}}^{^{3K}}$	заполняется	2,3	1,9	4,6	-

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
энергетических							
котлов							
Коэффициент	%	n	$100\text{-}1,5\cdot\Sigma Q_{\scriptscriptstyle K}{}^{6p({\scriptscriptstyle HOM})}/\Sigma Q_{\scriptscriptstyle K}{}^{6p}$	98,4	98,1	98,1	_
теплового потока	70	$\eta_{\scriptscriptstyle { m TII}}$	100-1,5 2Q _K 1 72Q _K 1	76,4	90,1	90,1	i
Дополнительные							
затраты							
электроэнергии на							
насосы ХВО для	тыс. кВт·ч	Θ_{nap}	ропонияется	353	398	409	
восполнения	тыс. кытч	\mathcal{F}_{nap}	заполняется	333	398	409	-
невозврата							
конденсата от							
потребителя							
Выработка тепла	Гкал/ч	$\overline{Q}_{\kappa}^{6p}$		941	770	602	
брутто котлами	т кал/ч	$Q_{\kappa}^{\circ p}$	заполняется	941	778	602	-
Выработка тепла	Γ	O fn	$\overset{-}{\mathrm{O}}_{\kappa}{}^{\mathrm{fop}}\cdot au$	2022560	2021250	2401270	
брутто котлами	Гкал	$Q_{\kappa}{}^{6p}$	$Q_{\kappa}^{\circ p} \cdot \tau$	2032560	2031358	2401378	-
Затраты							
электроэнергии на		2		1.62.45	11704	0027	
теплофикационную	тыс. кВт∙ч	$\Theta_{ ext{тепл}}$	заполняется	16345	11794	9837	-
установку							
Значение КПД							
брутто группы	%	$\eta_{\kappa(\Pi BK)}{}^{6p}$	заполняется	0	0	0	_
пиковых котлов		,					
Значение КПД							
брутто группы	0,1	бn		0.1.5	0.1.7	0.1.2	
энергетических	%	$\eta_{\kappa(i \kappa)}{}^{6p}$	заполняется	91,6	91,5	91,3	-
котлов							
значение							
суммарного расхода							
тепла на	Гкал	$Q_{\kappa}^{\ ch}$	заполняется	44099	30431	23934	-
собственные нужды		"					
котла							
значение							
суммарного расхода	Гкал	$Q_{\scriptscriptstyle T}{}^{\scriptscriptstyle \mathrm{CH}}$	заполняется	9554	3772	204	-
тепла на						-	

турбины	Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
значение суммарного расхода электроэнергии на собственные нужды котла заполняется	собственные нужды							
суммарного расхода электроэнергии на собственные нужды котла виссиное в топку Суммарный расход тепла на собственные нужды котлов Суммарный расход электроэнергии на собственные нужды котлов Суммарный расход тепла на каликати на собственные нужды котлов Суммарный расход тепла на каликати на собственные нужды котлов Каликати на калик								
электроэнергии на собственные нужды котла заполняется 46399 46303 74760 - собственные нужды котла заполняется 6327 7863 14755 - собственные нужды турбина баста в собственные нужды котла Суммарный расход тепла на собственные нужды котлов Суммарный расход тепла на собственные нужды турбин Суммарный расход электроэнергии на собственные нужды турбин Суммарный расход тепла на капиты на капиты								
котла котла тыс. кВт·ч Э, ск заполняется 6327 7863 14755 - собственные нужды турбины котла Суммарный расход тепла на собственные нужды котлов Суммарный расход тепла на собственные нужды гурбин Суммарный расход злектроонергии на собственные нужды гурбин Суммарный расход злектроонергии на собственные нужды гурбин Суммарный расход злектроонергии на собственые нужды гурбин Суммарный расход тепла на собственые нужды гурбин Суммарный расход злектроонергия на собственые нужды гурбин Суммарный расход тепла на собственые нужды гурбин Суммарный расход тепла на собственные нужды гурбин Суммарный расход тепла нетго на ккали/кВт·ч ц, п спла								
котда значение суммарного расхода электроэнергии на собственные нужды котда Суммарный расход злектроэнергии на собственные нужды котда Суммарный расход злектроэнергии на собственные нужды котда Суммарный расход тепла на собственные нужды котда Суммарный расход тепла на собственные нужды котда Суммарный расход злектроэнергии на собственные нужды котда Суммарный расход тепла на собственные нужды котда Суммарный расход тепла на собственные нужды котда Суммарный расход тепла на собственные нужды котдов Суммарный расход тепла на собственные нужды турбин Суммарный расход электроэнергии на обственные нужды котдов Суммарный расход тепла на собственные нужды турбин Суммарный расход электроэнергии на обственные нужды турбин Суммарный расход электроэнергии на собственные нужды турбин Суммарный расход электроэнергии на собственные нужды турбин Кумды расход пектроэнергии на обственные нужды турбин Ккал/кВт-ч ф, в, е,		тыс. кВт∙ч	$\mathfrak{I}_{\kappa}^{cH}$	заполняется	46399	46303	74760	-
значение суммарного расхода электроэнергии на собственные нужды турбины Колфонительно внесенное в толку Суммарный расход тепла на собственные нужды котлав Суммарный расход тепла на собственные нужды турбин Суммарный расход электроэнергии на собственные нужды турбин Суммарный расход закал/кВт-ч q₁ ^µ q₁ ⁶ (100+q₁ ⁶)/(100-3 ₆) 1229 1808 1448 -	1							
суммарного расхода электроэнергии на собственные нужды котлов Суммарный расход электроэнергии на собственные нужды котлов Суммарный расход тепла на собственные нужды турбин Суммарный расход тепла на ккал/кВт-ч q," q," q," q," q," (100+q,")/(100-3e,n) 1229 1808 1448 -	котла							
электроэнергии на собственные нужды турбины Коэффициент, учитывающий тепло дополнительно внесенное в топку Суммарный расход тепла на собственные нужды котла Суммарный расход электроэнергии на собственные нужды котлов Суммарный расход тепла на собственные нужды турбин Суммарный расход тепла на собственные нужды турбин Суммарный расход тепла на собственные нужды турбин Суммарный расход тепла на касобственные нужды турбин Сумнарный расход тепла на касл/кВт-ч цг"	значение							
собственные нужды турбины Коэффициент, учитывающий тепло дополнительно внесенное в топку Суммарный расход тепла на собственные нужды котла Суммарный расход электроэнергии на собственные нужды котлов Суммарный расход тепла на % Ягей Одгей (по Эдгей) Одгей (по Э	суммарного расхода							
Турбины Коэффициент, учитывающий тепло дополнительно внесенное в топку Суммарный расход тепла на собственные нужды котла Суммарный расход тепла на собственные нужды котлов Суммарный расход тепла на собственные нужды турбин Суммарный расход электроэнергии на собственные нужды турбин Суммарный расход электроэнергии на собственные нужды турбин Суммарный расход электроэнергии на собственные нужды турбин Кал/кВт-ч Чг ^п Чдельный расход тепла нетто на Ккал/кВт-ч Чг ^п Чдельный расход тепла нетто на Ккал/кВт-ч Чг ^п Чдельный расход тепла нетто на	электроэнергии на	тыс. кВт∙ч	$\mathfrak{I}_{\mathtt{T}}^{\mathtt{ch}}$	заполняется	6327	7863	14755	-
Коэффициент, учитывающий тепло дополнительно внесенное в топку Суммарный расход тепла на собственные нужды котла Суммарный расход электроэнергии на собственные нужды котлов Суммарный расход тепла на собственные нужды котлов Суммарный расход электроэнергии на собственные нужды котлов Суммарный расход тепла на собственные нужды котлов Суммарный расход тепла на собственные нужды турбин Суммарный расход лектроэнергии на собственные нужды турбин Суммарный расход электроэнергии на собственные нужды турбин Суммарный расход электроэнергии на собственные нужды турбин Суммарный расход электроэнергии на собственные нужды турбин Карт ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч	собственные нужды							
учитывающий тепло дополнительно внесенное в топку Суммарный расход тепла на собственные нужды котла Суммарный расход электроэнергии на собственные нужды котлов Суммарный расход тепла на собственные нужды котлов Суммарный расход тепла на собственные нужды тепла на собственные нужды котлов Суммарный расход тепла на собственные нужды тепла на собственные нужды турбин Суммарный расход электроэнергии на собственные нужды турбин Суммарный расход тепла на ккал/кВт-ч q_{r}^{en} q_{r}^{en} q_{r}^{ep} q_{r}^{ep} q_{r}^{en} q_{r}^{en} q_{r}^{en} q_{r}^{ep} q_{r}^{en}	турбины							
учитывающий тепло дополнительно внесенное в топку Суммарный расход тепла на собственные нужды котла Суммарный расход электроэнергии на собственные нужды котлов Суммарный расход тепла на собственные нужды котлов Суммарный расход тепла на собственные нужды тепла на собственные нужды котлов Суммарный расход тепла на собственные нужды тепла на собственные нужды турбин Суммарный расход электроэнергии на собственные нужды турбин Суммарный расход тепла на ккал/кВт-ч q_{r}^{en} q_{r}^{en} q_{r}^{ep} q_{r}^{ep} q_{r}^{en} q_{r}^{en} q_{r}^{en} q_{r}^{ep} q_{r}^{en}	Коэффициент,							
дополнительно внесенное в топку Суммарный расход тепла на собственные нужды котла Суммарный расход электроэнергии на собственные нужды котлов Суммарный расход тепла на собственные нужды котлов Суммарный расход тепла на собственные нужды котлов Суммарный расход тепла на собственные нужды турбин Суммарный расход электроэнергии на собственные нужды турбин Суммарный расход электроэнергии на собственные нужды турбин Кудельный расход тепла на котлов Суммарный расход тепла на котлов Суммарный расход тепла на котлов Куммарный расход тепла на котлов Куммарный расход тепла на котлов Куммарный расход тепла на котлов Кудельный расход тепла нетто на ккал/кВт·ч Турбин Ккал/кВт·ч Турбин Ккал/кВт·ч Турбин	учитывающий тепло	0/	T/C		1	1	1	
Суммарный расход тепла на собственные нужды котла Суммарный расход электроэнергии на собственные нужды котлов Суммарный расход тепла на собственные нужды котлов Суммарный расход тепла на собственные нужды котлов Суммарный расход тепла на собственные нужды турбин Суммарный расход электроэнергии на собственные нужды турбин Суммарный расход электроэнергии на собственные нужды турбин Курбин Курбин Калук Вт-ч фг фр. (100+qг сп.) (100-9св.) Калук Вт-ч фг фр. (100-9св.) Калук Вт-ч фг фр. (100-9св.) Калук Вт-ч фг фр. (100-9св.) Калук Вт-ч фг фг фг. (100-9св.) Калук Вт-ч фг фг фг фг. (100-9св.) Курбин Курбин Калук Вт-ч фг фг фг. (100-9св.) Калук Вт-ч фг фг фг. (100-9св.) Калук Вт-ч фг фг фг. (100-9св.) Калук Вт-ч фг фг фг фг. (100-9св.) Калук Вт-ч фг фг фг фг. (100-9св.) Калук Вт-ч фг	дополнительно	%	KQ	заполняется	1	1	1	-
тепла на собственные нужды котла Суммарный расход электроэнергии на собственные нужды котлов Суммарный расход тепла на собственные нужды котлов Суммарный расход тепла на собственные нужды турбин Суммарный расход зактроэнергии на собственные нужды турбин Компарный расход зактроэнергии на собственные нужды турбин Компарный расход зактроэнергии на собственные нужды турбин Кал/кВт-ч q _r ^в 100·Э _г ^{св} /Э 100·Э _г ^{св} /Э 0,7 3,6 4,5 - собственные нужды турбин Кал/кВт-ч q _r ^в q _r ^б р·(100+q _r ^{св})/(100-Э _{св}) 1229 1808 1448 -	внесенное в топку							
тепла на собственные нужды котла Суммарный расход электроэнергии на собственные нужды котлов Суммарный расход тепла на собственные нужды котлов Суммарный расход тепла на собственные нужды турбин Суммарный расход зактроэнергии на собственные нужды турбин Компарный расход зактроэнергии на собственные нужды турбин Компарный расход зактроэнергии на собственные нужды турбин Кал/кВт-ч q _r ^в 100·Э _г ^{св} /Э 100·Э _г ^{св} /Э 0,7 3,6 4,5 - собственные нужды турбин Кал/кВт-ч q _r ^в q _r ^б р·(100+q _r ^{св})/(100-Э _{св}) 1229 1808 1448 -	Суммарный расход							
Суммарный расход электроэнергии на собственные нужды котлов Суммарный расход тепла на собственные нужды турбин Суммарный расход тепла на собственные нужды турбин Суммарный расход электроэнергии на собственные нужды турбин Удельный расход за тепла на турбин Удельный расход тепла на ккал/кВт·ч q _r ^н q _r ^{6p} ·(100+q _r ^{cn})/(100-Э _{сн}) 100·Э _к ^{cн} /Э 100·Э _к ^{cн} /Э 100·Э _к ^{cн} /Э 100·Э _к ^{cн} /Э 100·Э _к ^{сн} /Р 100·Э _к ^{сн} /Р 100·Э _к ^{сн} /Р 100·Э _{сн} /Р 100·Э _к ^{сн} /Р 100·Э _к 100·Р 100·Р 100·Р 100·Р 100·Р 100·Р 100·Р 100·Р 100·Р 1		0/	CH	100 O CH/O fin	2.2	1.5	1.0	
Котла Суммарный расход электроэнергии на собственные нужды котлов Суммарный расход тепла на собственные нужды турбин Суммарный расход олектроэнергии на собственные нужды турбин Одген/(одгер.Э·10-5) Оден/(одгер.Э·10-5) Оден/(одгер.Э·1	собственные нужды	%	q_{κ}^{cn}	$100 \cdot Q_{\kappa}^{cn} / Q_{\kappa}^{op}$	2,2	1,5	1,0	-
Суммарный расход электроэнергии на собственные нужды котлов Суммарный расход тепла на собственные нужды турбин Суммарный расход Турбин Суммар	· ·							
электроэнергии на собственные нужды котлов Суммарный расход тепла на собственные нужды турбин Суммарный расход электроэнергии на собственные нужды турбин Суммарный расход электроэнергии на собственные нужды турбин Картина обственные нужды турбин Картина обст								
собственные нужды котлов Суммарный расход тепла на собственные нужды турбин Суммарный расход электроэнергии на собственные нужды турбин Удельный расход тепла нетто на ккал/кВт·ч q _T ^H q _T ^G (100+q _T ^{CH})/(100-Э _{CH}) ТОО'Эк"/Э О,9 1,0 0,0 - 1,0 0,0 - 1,0 0,0 - 1,0 1,0			D 0179/	100 0 00/0	_			
Котлов Суммарный расход тепла на собственные нужды турбин % Эт сн% 100 Эт сн% 100 Эт сн% 100 Эт сн% 100 Эт сн% 1229 1808 1448 -		%	$\mathcal{F}_{\kappa}^{ch,r_0}$	$100 \cdot \mathcal{A}_{\kappa}^{cn}/\mathcal{A}$	5	21	23	-
Суммарный расход тепла на собственные нужды турбин Суммарный расход электроэнергии на собственные нужды турбин Удельный расход тепла нетто на ккал/к B T -ч q_T^{e} $q_T^$	_							
тепла на собственные нужды турбин Суммарный расход электроэнергии на собственные нужды турбин Удельный расход тепла нетто на ккал/кВт·ч q _r ^н q _r ⁶ ·(100+q _r ^{ch})/(100-Э _{сн}) 100 - 100-5 100								
собственные нужды турбин Суммарный расход электроэнергии на собственные нужды турбин Удельный расход тепла нетто на ккал/кВт·ч q _r ^H q _r ^{6p} ·(100+q _r ^{cH})/(100-Э _{сH}) 100.9 1,0 0,0 - 0			277	O 00// 50 D 10.5				
турбин Суммарный расход электроэнергии на собственные нужды турбин Удельный расход тепла нетто на ккал/кВт·ч q _т ^н q _r ^{6p} ·(100+q _r ^{ch})/(100-Э _{сн}) 100·Э _т ^{ch} /Э 100·Э _т ^{ch} /Э 100·Э _т ^{ch} /Э 100·Э _т ^{ch} /Э 1229 1808 1448 -		%	$q_{\scriptscriptstyle \mathrm{T}}^{\;\mathrm{CH}}$	$Q_{\rm T}^{\rm ch}/(q_{\rm T}^{\rm op}\cdot \Theta\cdot 10^{-3})$	0,9	1,0	0,0	-
Суммарный расход электроэнергии на собственные нужды турбин								
электроэнергии на собственные нужды турбин $\%$ $9_{\rm T}^{\rm ch\%}$ $100 \cdot 9_{\rm T}^{\rm ch}/9$ $0,7$ $3,6$ $4,5$ - $9_{\rm T}^{\rm ch\%}$ Удельный расход тепла нетто на $8_{\rm T}^{\rm ch}$ $8_{\rm T}^{\rm ch}$ $9_{\rm T}^{\rm ch}$	21							
собственные нужды турбин				400 =	_	_	_	
турбин Удельный расход тепла нетто на ккал/к B т·ч q_{r}^{H} $q_{r}^{Gp}\cdot(100+q_{r}^{CH})/(100-9_{CH})$ 1229 1808 1448 -		%	Эт сн%	$100 \cdot Э_{\scriptscriptstyle T^{\mathrm{ch}}} / Э$	0,7	3,6	4,5	-
Удельный расход тепла нетто на ккал/к B т·ч $q_{\rm r}^{\rm H}$ $q_{\rm r}^{\rm 6p}\cdot(100+q_{\rm r}^{\rm ch})/(100-\Im_{\rm ch})$ 1229 1808 1448 -								
тепла нетто на	* 1							
		ккал/кВт∙ч	O™.H	$q_{x}^{\text{fp}} \cdot (100 + q_{x}^{\text{ch}}) / (100 - 3_{\text{cm}})$	1229	1808	1448	_
	турбоагрегат	KKWI KD1 1	\mathbf{Y}^{T}	Ч г (100 Чг //(100 Эсн)	1227	1000	1110	

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
Доля отпуска тепла	%	$lpha_{\scriptscriptstyle \Pi B K}$	$100 \cdot \mathrm{Q^{IIBK}_{OT}/Q_{OT}}$	0,0	0,0	0,0	
пиковыми котлами	70	С ПВК	100 Q of Qor	0,0	0,0	0,0	_
Исходно-							
номинальное							
значение удельного	Гкал	$Q_{\scriptscriptstyle 3}$	$q_{\scriptscriptstyle \mathrm{T}}^{\mathrm{fop}} \cdot \mathrm{G} \cdot 10^{-3}$	1019766	381921	453335	_
расхода тепла на	1 Kan	Ψ9	q _T 3 10	1017700	301721	+33333	
производство							
электроэнергии							
Нагрев воды в	Гкал	$Q^{\scriptscriptstyle \Gamma B}{}_{\scriptscriptstyle m Hac}$	$ m Q_{or} \cdot lpha_{ m Hac} / 100$	166201	42169	37195	_
сетевых насосах	1 KaJi	Q нас	Qot Chac/100	100201	4210)	37173	_
Коэффициент							
отнесения затрат							
топлива			$(Q_{9}+Q_{T}^{\text{ cH}})/(Q_{9}+Q_{T}^{\text{ cH}}+(Q_{OT}-$				
энергетическими	ед	Кэ	$Q^{\text{rB}}_{\text{Hac}}$: $(100+\alpha_{\text{nor}}^{\text{sK}})\cdot 10^{-2})$	0,2	0,6	0,4	-
котлами на			Q Hac) (100 + Chor) 10)				
производство							
электроэнергии							
Удельный расход							
электроэнергии на							
собственные нужды,	%	$\mathfrak{Z}_{\mathfrak{z}}$	$\Theta_{\mathrm{T}}^{\mathrm{ch}\%} + \mathrm{K}_{9} \cdot \Theta_{\kappa}^{\mathrm{ch}\%}$	2,0	15,2	13,4	_
отнесенного на	/0	9	\mathcal{J}_{T} \mathcal{J}_{K}	2,0	13,2	13,4	_
производство							
электроэнергии							
Номинальное			$n_{\text{recon}}^{\text{6p}} \cdot (100 - q_{\text{ref}}^{\text{ch}}) \cdot (100 - P_{\text{ch}}) / (100 \cdot K_{\text{ch}} \cdot (100 - Q_{\text{ch}})) / (100 \cdot K_{\text{ch}} \cdot (100 - Q_{\text{ch}}))$				
значение КПД нетто	%	$\eta_{\kappa(\mathfrak{I})^{H}}$	$ \eta_{\kappa(3\kappa)}^{\text{6p}} \cdot (100 - q_{\kappa}^{\text{cH}}) \cdot (100 - 3) / (100 \cdot \text{K}_{Q} \cdot (100 - 3)) / (100 \cdot \text{K}_{Q} \cdot (100 - 3)) $	88,5	79,2	82,0	-
котлов			J₁ //				
Удельный расход							
условного топлива	г у.т./кВт·ч	$\mathbf{b}_{\scriptscriptstyle{9}}$	$100 \cdot q_{_{\rm T}}^{^{\rm H}} \cdot (100 + K_{\rm ct}) / \eta_{{\rm K}(3{\rm K})}^{^{\rm H}} \cdot \eta_{{\rm TH}} \cdot 7$	201,7	332,7	257,4	231,0
на отпущенную	J.I., KD1 1	<i>J</i> ₃	100 Чт (100 - 1007) - 1 1 1 1 1 1 1 1 1 1	201,7	352,7	257,1	231,0
электроэнергию							
Промежуточный							
удельный расход	_	()					
условного топлива	кг у.т./Гкал	$b^{\pi(\mathfrak{s}\kappa)}_{}$	$(100 + \alpha_{\text{пот}}^{3\kappa(\text{H})}) \cdot (100 + K_{\text{ct}}) \cdot 10^3 / (\eta_{\kappa(3\kappa)}^{\text{H}} \cdot \eta_{\text{TT}} \cdot 7)$	168,0	187,5	186,0	-
на тепловую							
энергию по							

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
энергетическим							
котлам							
Промежуточный							
удельный расход							
топлива на тепловую	кг у.т./Гкал	$b^{\pi({\scriptscriptstyle HBK})}{}_{\scriptscriptstyle T}$	$10^5 / \ 7 \cdot \eta_{\kappa(\Pi BK)}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	0,0	0,0	0,0	-
энергию по пиковым							
котлам							
Увеличение							
удельного расхода							
условного топлива							
вследствие	кг у.т./Гкал	$\Delta b_{\scriptscriptstyle \mathrm{T9}}$	$\Theta_{ ext{тепл}} \cdot b_{ ext{-}}/Q_{ ext{от}}$	1,4	6,1	2,3	-
дополнительных							
затрат							
электроэнергии							
Удельный расход							
условного топлива	кг у.т./Гкал	b_{r}	$\Delta b_{{\scriptscriptstyle \mathrm{T}}{\scriptscriptstyle 9}} + (b^{{\scriptscriptstyle \Pi}({\scriptscriptstyle 9}{\scriptscriptstyle K})}{}_{{\scriptscriptstyle \mathrm{T}}} \cdot (100$ - $lpha_{{\scriptscriptstyle \Pi}{\scriptscriptstyle B}{\scriptscriptstyle K}}$ -	157,3	181,3	182,0	167,8
на отпущенную	Ki y.T./I Kan	\mathcal{O}_{T}	$\alpha_{\text{\tiny Hac}}) + b^{\pi({}_{\text{\tiny HBK}})}{}_{\text{\tiny T}} \cdot \alpha_{\pi \text{\tiny BK}}) / 100$	137,3	101,5	162,0	107,8
тепловую энергию							
Расход условного							
топлива на		$\mathrm{B}_{\scriptscriptstyle{9}}$	h . D /1000	155 6	52,9	62,5	271,0
отпущенную	тыс. т у.т.	$\mathbf{D}_{\mathfrak{I}}$	$b_9 \cdot \Theta_{or}/1000$	155,6	32,9	62,3	2/1,0
электроэнергию							
Расход условного							
топлива на		D	h O /1000	262.1	115.0	100.1	679.0
отпущенную	тыс. т у.т.	$\mathrm{B}_{\scriptscriptstyle\mathrm{T}}$	$b_{\rm r} \cdot Q_{ m or}/1000$	363,1	115,8	199,1	678,0
тепловую энергию							
Общестанционный							
расход условного	тыс. т у.т.	В	$\mathrm{B}_{\scriptscriptstyle{9}}\!\!+\!\mathrm{B}_{\scriptscriptstyle{\mathrm{T}}}$	518,8	168,7	261,6	949,0
топлива	-						
			2028 г.				
Число часов работы	Ч	τ	заполняется	2160	2611	3989	-
Суммарная нагрузка	MD-	N		220	160	120	
турбин	МВт	$N_{\scriptscriptstyle \mathrm{T}}$	заполняется	239	169	128	-
Выработка	mino viDmini	Э	Nr	052207	222520	221577	1 400 500 50
электроэнергии	тыс. кВт·ч	<i>3</i>	$N_T \cdot \tau$	853307	223539	331576	1 408 562,50

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
Отпуск электроэнергии	тыс. кВт·ч	$\mathfrak{Z}_{ ext{ot}}$	$\mathbf{\mathcal{G}}_{K}^{CH}$ - $\mathbf{\mathcal{G}}_{T}^{CH}$ - $\mathbf{\mathcal{G}}_{Tenn}$ - $\mathbf{\mathcal{G}}_{пap}$	780680	161272	246366	1 188 317,64
Отпуск тепловой энергии	Гкал	Q _{ot}	$\overline{Q}_{ ext{ot}} \cdot au$	2333318	645829	1105793	4 084 940,70
Значение удельного расхода тепла брутто на турбоагрегат	ккал/кВт∙ч	$q_{_{ m T}}^{^{ m 6p}}$	в расчет	1205	1727	1383	1422
Расход тепла на выработку электроэнергии	Гкал	Qэ	$N_{\scriptscriptstyle T} \cdot q_{\scriptscriptstyle T} \cdot au/1000$	622069	762054	706149	-
Коэффициент стабилизации тепловых процессов	%	K_{cr}	заполняется	0,1	0,1	0,1	-
Доля отпуска тепла, обеспечиваемая за счет нагрева воды в сетевых насосах	%	αнас	заполняется	7,2	6,6	3,4	-
Значение коэффициента потерь при отпуске тепла внешним потребителям от энергетических котлов	%	$lpha_{ ext{not}}^{-s\kappa}$	заполняется	2,3	1,9	4,6	-
Коэффициент теплового потока	%	$\eta_{\scriptscriptstyle { m TII}}$	$100\text{-}1,5\cdot\Sigma Q_\kappa^{~6p(\text{hom})}/\Sigma Q_\kappa^{~6p}$	98,4	98,1	98,1	-
Дополнительные затраты электроэнергии на насосы ХВО для восполнения невозврата конденсата от потребителя	тыс. кВт∙ч	\mathfrak{I}_{nap}	заполняется	353	398	409	-

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
Выработка тепла брутто котлами	Гкал/ч	$\overline{\overline{Q}}_{\kappa}{}^{6p}$	заполняется	941	778	602	-
Выработка тепла брутто котлами	Гкал	$Q_{\kappa}{}^{6p}$	${\overset{-}{Q}_{\kappa}}{}^{6p}\cdot \tau$	2032560	2031358	2401378	-
Затраты электроэнергии на теплофикационную установку	тыс. кВт∙ч	Э _{тепл}	заполняется	16345	11794	9837	-
Значение КПД брутто группы пиковых котлов	%	$\eta_{\kappa(\Pi BK)}{}^{6p}$	заполняется	0	0	0	-
Значение КПД брутто группы энергетических котлов	%	$\eta_{\kappa(3\kappa)}{}^{6p}$	заполняется	91,6	91,5	91,3	-
значение суммарного расхода тепла на собственные нужды котла	Гкал	Q_{κ}^{ch}	заполняется	44099	30431	23934	-
значение суммарного расхода тепла на собственные нужды турбины	Гкал	$Q_{\scriptscriptstyle \mathrm{T}}^{\mathrm{ch}}$	заполняется	9530	3772	204	-
значение суммарного расхода электроэнергии на собственные нужды котла	тыс. кВт∙ч	\mathfrak{Z}^{ch}_{k}	заполняется	46399	46303	74760	-
значение суммарного расхода электроэнергии на собственные нужды турбины	тыс. кВт∙ч	$\mathfrak{Z}^{\scriptscriptstyleCH}$	заполняется	6327	7863	14755	-

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
Коэффициент,							
учитывающий тепло дополнительно	%	K_Q	заполняется	1	1	1	-
внесенное в топку							
Суммарный расход тепла на собственные нужды котла	%	${q_{\kappa}}^{ m ch}$	$100\!\cdot\! Q_\kappa^{\; {\rm ch}}/Q_\kappa^{\; 6p}$	2,2	1,5	1,0	-
Суммарный расход электроэнергии на собственные нужды котлов	%	$\mathfrak{I}_{\kappa}^{ ext{ch}\%}$	$100 \cdot \Im_{\kappa}^{\text{ ch}} / \Im$	5	21	23	-
Суммарный расход тепла на собственные нужды турбин	%	$q_{\mathrm{r}}^{\mathrm{ch}}$	$Q_{\rm T}^{{ m ch}}/(q_{\rm T}^{{ m 6p}}\cdot 3\cdot 10^{-5})$	0,9	1,0	0,0	-
Суммарный расход электроэнергии на собственные нужды турбин	%	$\mathfrak{I}_{\scriptscriptstyle \mathrm{T}}^{\scriptscriptstyleCH\%}$	$100 \cdot \Im_{\mathrm{t}}^{\mathrm{ch}} / \Im$	0,7	3,5	4,4	-
Удельный расход тепла нетто на турбоагрегат	ккал/кВт∙ч	$q_{\scriptscriptstyle \mathrm{T}}^{^{\mathrm{H}}}$	$q_{_{\mathrm{T}}}^{\mathrm{fp}} \cdot (100 + q_{_{\mathrm{T}}}^{\mathrm{ch}}) / (100 - 3_{\mathrm{ch}})$	1225	1807	1448	-
Доля отпуска тепла пиковыми котлами	%	$lpha_{\scriptscriptstyle \Pi B K}$	$100\!\cdot\!Q^{\rm mbk}{}_{\rm ot}/Q_{\rm ot}$	0,0	0,0	0,0	-
Исходно- номинальное значение удельного расхода тепла на производство электроэнергии	Гкал	Q_{9}	$q_{\scriptscriptstyle \mathrm{T}}{}^{\mathrm{6p}}\cdot 3\cdot 10^{-3}$	1028235	386052	458569	-
Нагрев воды в сетевых насосах	Гкал	Q ^{гв} нас	$Q_{\text{ot}} \cdot \alpha_{\text{hac}} / 100$	167999	42625	37597	-
Коэффициент отнесения затрат	ед	К,	$(Q_9 + Q_T^{cH})/(Q_9 + Q_T^{cH} + (Q_{oT} - Q_{Bac}) \cdot (100 + \alpha_{noT}^{9K}) \cdot 10^{-2})$	0,2	0,6	0,4	-

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
топлива							
энергетическими							
котлами на							
производство							
электроэнергии							
Удельный расход							
электроэнергии на							
собственные нужды,	%	$\mathfrak{Z}_{\mathfrak{z}}$	$P_{\mathtt{L}}^{cH}$	1.0	15,0	13,2	
отнесенного на	%0	$\mathcal{J}_{\mathfrak{I}}$	$\mathcal{J}_{\scriptscriptstyle{\mathrm{T}}}$ $ op \mathbf{K}_{\scriptscriptstyle{\mathfrak{I}}}\cdot\mathcal{J}_{\scriptscriptstyle{\mathrm{K}}}$	1,9	13,0	15,2	-
производство							
электроэнергии							
Номинальное			m fp./100 g cH)./100 D)//100 Tr /100				
значение КПД нетто	%	$\eta_{\kappa(3\kappa)}{}^{\mathrm{H}}$	$\eta_{\kappa(3\kappa)}^{\text{fp}} \cdot (100 - q_{\kappa}^{\text{cH}}) \cdot (100 - \Im_{3}) / (100 \cdot \text{K}_{Q} \cdot (100 - \Im_{3}))$	88,5	79,4	82,1	-
котлов			\mathcal{I}_{T}				
Удельный расход							
условного топлива	n vy m /veDmyy	$\mathbf{b}_{\scriptscriptstyle{9}}$	100. a H. (100 + W)/m H. m . 7	201,1	331,8	257,0	230,5
на отпущенную	г у.т./кВт∙ч	D_9	$100 \cdot q_{\scriptscriptstyle T}^{^{\mathrm{H}}} \cdot (100 + K_{\scriptscriptstyle \mathrm{CT}}) / \eta_{\scriptscriptstyle \mathrm{K}(\mathrm{3K})}^{^{\mathrm{H}}} \cdot \eta_{\scriptscriptstyle \mathrm{TII}} \cdot 7$	201,1	331,8	237,0	230,3
электроэнергию							
Промежуточный							
удельный расход							
условного топлива							
на тепловую	кг у.т./Гкал	$b^{\pi(\mathfrak{i}\kappa)}_{\mathrm{T}}$	$(100 + \alpha_{\text{пот}}^{\text{эк(H)}}) \cdot (100 + K_{\text{ст}}) \cdot 10^3 / (\eta_{\text{k(эк)}^{\text{H}}} \cdot \eta_{\text{тп}} \cdot 7)$	167,9	187,1	185,7	-
энергию по							
энергетическим							
котлам							
Промежуточный							
удельный расход							
топлива на тепловую	кг у.т./Гкал	$b^{\pi({\scriptscriptstyle HBK})}{}_{\scriptscriptstyle T}$	$10^{5}/\ 7 \cdot \eta_{\kappa(\Pi B \kappa)}{}^{6p}$	0,0	0,0	0,0	-
энергию по пиковым							
котлам							
Увеличение							
удельного расхода							
условного топлива	кг у.т./Гкал	$\Delta b_{\scriptscriptstyle \mathrm{T9}}$	$\Theta_{ ext{ iny Tenn}} \cdot b_{ ext{ iny P}} / Q_{ ext{ iny OT}}$	1,4	6,1	2,3	-
вследствие	-		_				
дополнительных							

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
затрат							
электроэнергии							
Удельный расход							
условного топлива	кг у.т./Гкал	$\mathbf{b}_{ ext{ iny T}}$	$\Delta b_{{\scriptscriptstyle \mathrm{T}}{\scriptscriptstyle 9}} + (b^{{\scriptscriptstyle \Pi}({\scriptscriptstyle 9}{\scriptscriptstyle K})}{}_{{\scriptscriptstyle \mathrm{T}}} \cdot (100$ - $lpha_{{\scriptscriptstyle \Pi}{\scriptscriptstyle \mathrm{B}}{\scriptscriptstyle K}}$ -	157,3	180,8	181,6	167,6
на отпущенную	Ki y.i./i Kasi	O_{T}	$\alpha_{\scriptscriptstyle \mathrm{Hac}}) + b^{\scriptscriptstyle \Pi(\scriptscriptstyle \mathrm{HBK})}{}_{\scriptscriptstyle \mathrm{T}} \cdot lpha_{\scriptscriptstyle \mathrm{\PiBK}}) / 100$	137,3	100,0	101,0	107,0
тепловую энергию							
Расход условного							
топлива на	THE THE	\mathbf{B}_{2}	$b_{\mathfrak{d}} \cdot \mathfrak{Z}_{\mathrm{or}} / 1000$	157,0	53,5	63,3	273,9
отпущенную	тыс. т у.т.	$\mathbf{D}_{\mathfrak{I}}$	υ ₃ · 3 ₀₁ / 1000	137,0	33,3	03,3	273,9
электроэнергию							
Расход условного							
топлива на		D	1 0 /1000	266.0	1160	200.0	604.5
отпущенную	тыс. т у.т.	$\mathbf{B}_{\scriptscriptstyle\mathrm{T}}$	$b_{\mathrm{T}} \cdot Q_{\mathrm{orf}} / 1000$	366,9	116,8	200,8	684,5
тепловую энергию							
Общестанционный							
расход условного	тыс. т у.т.	В	$\mathrm{B}_{\scriptscriptstyle{9}}\!\!+\!\mathrm{B}_{\scriptscriptstyle{\mathrm{T}}}$	524,0	170,3	264,2	958,4
топлива	-						
			2038 г.				
Число часов работы	Ч	τ	заполняется	2160	2611	3989	-
Суммарная нагрузка	МВт	$N_{\scriptscriptstyle \mathrm{T}}$	заполняется	239	169	128	_
турбин	WIDI	1 V _T	Saliolitaciea	237	107	120	_
Выработка	тыс. кВт∙ч	Э	$N au \cdot au$	857836	224725	333335	1 416 037,92
электроэнергии	TBIC. RDT 4	3	IVI t	037030	224723	333333	1 410 037,72
Отпуск	тыс. кВт·ч	Θ_{ot}	9 - $9_{\scriptscriptstyle{\mathrm{K}}}^{\scriptscriptstyle{\mathrm{CH}}}$ - $9_{\scriptscriptstyle{\mathrm{T}}}^{\scriptscriptstyle{\mathrm{CH}}}$ - $9_{\scriptscriptstyle{\mathrm{Tenn}}}$ - $9_{\scriptscriptstyle{\mathrm{пар}}}$	785209	162458	248125	1 195 792,32
электроэнергии	TBIC. KDT 4	Jot	3-3 _к -3 _т -3тепл-3пар	763207	102430	240123	1 175 172,32
Отпуск тепловой	Гкал	$Q_{ m ot}$	$\overline{\mathrm{Q}}_{\mathrm{or}}\cdot au$	2345701	649257	1111662	4 106 620,00
энергии	т кал	Qот	Q _{or} · t	2343701	049231	1111002	4 100 020,00
Значение удельного							
расхода тепла брутто	ккал/кВт·ч	$q_{\scriptscriptstyle \mathrm{T}}{}^{\mathrm{6p}}$	в расчет	1205	1727	1383	1422
на турбоагрегат							
Расход тепла на							
выработку	Гкал	Qэ	$N_{\scriptscriptstyle T}\cdot q_{\scriptscriptstyle T}\cdot au/1000$	622069	762054	706149	-
электроэнергии							

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
Коэффициент стабилизации тепловых процессов	%	Кст	заполняется	0,1	0,1	0,1	-
Доля отпуска тепла, обеспечиваемая за счет нагрева воды в сетевых насосах	%	$lpha_{ m Hac}$	заполняется	7,2	6,6	3,4	-
Значение коэффициента потерь при отпуске тепла внешним потребителям от энергетических котлов	%	$lpha_{\mathrm{nor}}^{-\mathrm{sk}}$	заполняется	2,3	1,9	4,6	-
Коэффициент теплового потока	%	$\eta_{\scriptscriptstyle T\Pi}$	$100\text{-}1,5\!\cdot\!\Sigma Q_\kappa^{~6p(\text{hom})}\!/\!\Sigma Q_\kappa^{~6p}$	98,4	98,1	98,1	-
Дополнительные затраты электроэнергии на насосы ХВО для восполнения невозврата конденсата от потребителя	тыс. кВт∙ч	$ eal_{ ext{пар}}$	заполняется	353	398	409	-
Выработка тепла брутто котлами	Гкал/ч	$\overline{Q}_{\kappa}{}^{6p}$	заполняется	941	778	602	-
Выработка тепла брутто котлами	Гкал	$Q_{\kappa}{}^{6p}$	$\overline{Q}_{\kappa}{}^{6p}\cdot \tau$	2032560	2031358	2401378	_
Затраты электроэнергии на теплофикационную установку	тыс. кВт∙ч	Этепл	заполняется	16345	11794	9837	-
Значение КПД брутто группы пиковых котлов	%	$\eta_{\kappa_{(\Pi BK)}}$ бр	заполняется	0	0	0	-

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
Значение КПД							
брутто группы	%	$\eta_{\kappa(\ni\kappa)}{}^{6p}$	заполняется	91,6	91,5	91,3	
энергетических	70	I [к(эк) ,	кэтэкнцопьк	91,0	91,3	91,3	-
котлов							
значение							
суммарного расхода							
тепла на	Гкал	$Q_{\kappa}^{\ ch}$	заполняется	44099	30431	23934	-
собственные нужды							
котла							
значение							
суммарного расхода							
тепла на	Гкал	$Q_{\scriptscriptstyle T}{}^{\scriptscriptstyle \mathrm{CH}}$	заполняется	9530	3772	204	-
собственные нужды							
турбины							
значение							
суммарного расхода							
электроэнергии на	тыс. кВт∙ч	\mathfrak{Z}^{ch}	заполняется	46399	46303	74760	-
собственные нужды							
котла							
значение							
суммарного расхода							
электроэнергии на	тыс. кВт∙ч	$\mathfrak{I}_{\mathtt{T}}^{\mathtt{ch}}$	заполняется	6327	7863	14755	-
собственные нужды							
турбины							
Коэффициент,							
учитывающий тепло	%	K_{Q}	заполняется	1	1	1	
дополнительно	/0	IVQ	заполнистся	1	1	1	-
внесенное в топку							
Суммарный расход							
тепла на	%	${q_{\kappa}}^{\mathrm{ch}}$	$100 \cdot Q_{\kappa}{}^{ch}/Q_{\kappa}{}^{6p}$	2,2	1,5	1,0	_
собственные нужды	/0	Чк	100 Q _K /Q _K -	۷,۷	1,5	1,0	_
котла							
Суммарный расход	%	Э, сн%	$100 \cdot 3_{\kappa}^{\text{ ch}} / 3$	5	21	22	_
электроэнергии на	/0	→ ^K	100 J _K /J		21	22	_

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
собственные нужды	-						
котлов							
Суммарный расход							
тепла на	0/	с сн	O SH/(a Sp. D. 10-5)	0.0	1.0	0.0	
собственные нужды	%	$q_{\scriptscriptstyle \mathrm{T}}^{}}$	$Q_{\mathrm{r}}^{\mathrm{cH}}/(q_{\mathrm{r}}^{\mathrm{fop}}\cdot \mathbf{\mathcal{G}}\cdot 10^{-5})$	0,9	1,0	0,0	-
турбин							
Суммарный расход							
электроэнергии на	0/	CH ⁰ / ₀	100 D cH/D	0.7	2.5	4.4	
собственные нужды	%	Этсн%	$100 \cdot \mathfrak{I}_{\mathrm{r}}^{\mathrm{c}_{\mathrm{H}}}/\mathfrak{I}$	0,7	3,5	4,4	=
турбин							
Удельный расход							
тепла нетто на	ккал/кВт·ч	$q_{\scriptscriptstyle \mathrm{T}}^{^{\scriptscriptstyle \mathrm{H}}}$	$q_{\rm T}^{\rm 6p} \cdot (100 + q_{\rm T}^{\rm ch})/(100 - \Theta_{\rm ch})$	1225	1807	1448	-
турбоагрегат		1					
Доля отпуска тепла	0.1		100 OFF	0.0	0.0	0.0	
пиковыми котлами	%	$lpha_{\scriptscriptstyle \Pi B K}$	$100 \!\cdot\! Q^{\scriptscriptstyle \Pi BK}{}_{\scriptscriptstyle OT}/Q_{\scriptscriptstyle OT}$	0,0	0,0	0,0	-
Исходно-							
номинальное							
значение удельного	Б		6n D 10-3	1022602	200100	461000	
расхода тепла на	Гкал	$Q_{\scriptscriptstyle 9}$	$q_{\scriptscriptstyle \mathrm{T}}^{}\mathrm{6p}}\cdot 3\cdot 10^{-3}$	1033692	388100	461003	-
производство							
электроэнергии							
Нагрев воды в	Б	O.E.	0 /100	1,00000	42051	25505	
сетевых насосах	Гкал	Q ^{гв} нас	$Q_{ m or} \cdot lpha_{ m Hac} / 100$	168890	42851	37797	-
Коэффициент							
отнесения затрат							
топлива			(O O CH) //O O CH /O				
энергетическими	ед	$K_{\mathfrak{I}}$	$(Q_3+Q_T^{CH})/(Q_3+Q_T^{CH}+(Q_{OT}-Q_{OT}^{CH})$	0,2	0,6	0,4	-
котлами на			$Q^{\scriptscriptstyle \Gamma B}{}_{\scriptscriptstyle Hac}) \cdot (100 + \alpha_{\scriptscriptstyle \Pi O T}{}^{\scriptscriptstyle 9K}) \cdot 10^{-2})$	ĺ	,	,	
производство							
электроэнергии							
Удельный расход							
электроэнергии на			D av0/ . To D av0/				
собственные нужды,	%	$\mathfrak{Z}_{\mathfrak{Z}}$	$A^{L_{cH}}+K^{a}\cdotA^{K_{cH}}$	1,9	14,9	13,1	-
отнесенного на							

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
производство							
электроэнергии							
Номинальное			n ^{fp} . (100 a ^{cH}). (100 b)/ (100 K (100				
значение КПД нетто	%	$\eta_{\kappa(\mathfrak{s}\kappa)}^{^{\mathrm{H}}}$	$\eta_{\kappa(3\kappa)}^{\text{6p}} \cdot (100 - q_{\kappa}^{\text{cH}}) \cdot (100 - 3_{9}) / (100 \cdot K_{Q} \cdot (100 - 3_{T}^{\text{cH}}))$	88,5	79,5	82,2	-
котлов			J _T))				
Удельный расход							
условного топлива	г у.т./кВт·ч	b _∍	$100 \cdot q_{\rm T}^{\rm H} \cdot (100 + K_{\rm cT}) / \eta_{{\rm K}(3{ m K})}^{\rm H} \cdot \eta_{\rm TH} \cdot 7$	201,1	331,4	256,7	230,3
на отпущенную	г ул./кыгч	υ ₃	100 Чт (100+Кст)/ Цк(эк) 1 Цтп /	201,1	331,4	230,7	230,3
электроэнергию							
Промежуточный							
удельный расход							
условного топлива							
на тепловую	кг у.т./Гкал	$b^{\pi(\Im \kappa)}_{\mathrm{T}}$	$(100+\alpha_{\text{not}}^{\text{эк(H)}})\cdot(100+K_{\text{ct}})\cdot10^3/(\eta_{\text{k(эk)}}^{\text{H}}\cdot\eta_{\text{TII}}\cdot7)$	167,9	186,9	185,5	-
энергию по							
энергетическим							
котлам							
Промежуточный							
удельный расход							
топлива на тепловую	кг у.т./Гкал	$b^{\pi({\scriptscriptstyle HBK})}{}_{\scriptscriptstyle T}$	10 ⁵ / 7∙η _{к(пвк)} ^{бр}	0,0	0,0	0,0	-
энергию по пиковым							
котлам							
Увеличение							
удельного расхода							
условного топлива							
вследствие	кг у.т./Гкал	$\Delta b_{\scriptscriptstyle \mathrm{T9}}$	$\Theta_{ ext{тепл}} \cdot b_{ ext{-}}/Q_{ ext{от}}$	1,4	6,0	2,3	-
дополнительных							
затрат							
электроэнергии							
Удельный расход							
условного топлива	кг у.т./Гкал	$\mathbf{b}_{ ext{ iny T}}$	$\Delta b_{{\scriptscriptstyle T}{\scriptscriptstyle 3}} + (b^{{\scriptscriptstyle \Pi}({\scriptscriptstyle 3}{\scriptscriptstyle K})}{}_{{\scriptscriptstyle T}} \cdot (100 - lpha_{{\scriptscriptstyle \Pi}{\scriptscriptstyle B}{\scriptscriptstyle K}} -$	157,2	180,6	181,5	167,5
на отпущенную	KI y.I./I KAJI	U_{T}	$\alpha_{ ext{hac}}) + b^{\pi(ext{hbk})}_{ ext{ iny T}} \cdot lpha_{\pi ext{BK}}) / 100$	137,2	100,0	101,5	107,5
тепловую энергию							
Расход условного	THE TAT	B_9	$b_3 \cdot \Theta_{or}/1000$	157,9	53,8	63,7	275,4
топлива на	тыс. т у.т.	$\mathbf{D}_{\mathfrak{I}}$	U ₃ O _{0T} / 1000	137,7	33,0	03,7	413,4

Показатель	Размерность	Обозначение	Расчетная формула	Зимний	Переходный	Летний	Год
отпущенную							
электроэнергию							
Расход условного							
топлива на	THE THE	$\mathbf{B}_{\scriptscriptstyle\mathrm{T}}$	$\mathbf{b}_{\scriptscriptstyle \mathrm{T}}\!\cdot\!\mathbf{Q}_{\scriptscriptstyle \mathrm{OT}}\!/1000$	368,8	117,2	201,7	687,8
отпущенную	тыс. т у.т.	\mathbf{D}_{T}	O_{T} Q_{OT} 1000	300,0	117,2	201,7	007,0
тепловую энергию							
Общестанционный							
расход условного	тыс. т у.т.	В	$\mathrm{B}_{\scriptscriptstyle{9}}\!\!+\!\mathrm{B}_{\scriptscriptstyle{\mathrm{T}}}$	526,7	171,1	265,4	963,2
топлива							

